

**LAPLACIAN COMPARISON THEOREM ON
RIEMANNIAN MANIFOLDS WITH
CD(K, m)-CONDITION FOR $m \leq 1$**

KUWAE, KAZUHIRO

ABSTRACT

Let $L = \Delta - \nabla\phi \cdot \nabla$ be a symmetric diffusion operator with an invariant measure $\mu(dx) = e^{-\phi(x)}m(dx)$ on a complete non-compact smooth Riemannian manifold (M, g) with its volume element $m = \text{vol}_g$, and $\phi \in C^2(M)$ a potential function. In this talk, we show a Laplacian comparison theorem on weighted complete Riemannian manifolds with $\text{CD}(K, m)$ -condition for $m \leq 1$ and a continuous function K . As consequences, we give the optimal conditions on m -Bakry-Émery Ricci tensor for $m \leq 1$ such that the Bishop-Gromov volume comparison theorem, the finiteness of fundamental group, Ambrose-Myers' theorem, Myers' theorem, and the Cheeger-Gromoll type splitting theorem hold on weighted complete Riemannian manifolds. Some of these results were well-studied for m -Bakry-Émery Ricci curvature for $m \geq n$ (Qian, Lott, Li, Wei-Wylie) or $m = 1$ (Wylie, Wylie-Yeroshkin 2016). When $m < 1$, our results are new in the literature. This is joint work with Xiang-Dong Li (Chinese Academy of Science).

DEPARTMENT OF MATHEMATICS/FUKUOKA UNIVERSITY
E-mail address: `kuwae@fukuoka-u.ac.jp`