

MINIMAL CURVES IN $\mathcal{U}(n)$ AND $\mathcal{G}l(n)^+$ WITH RESPECT TO THE SPECTRAL AND THE TRACE NORMS

Speaker: Ghiglioni Eduardo (IAM-CMalp; eghiglioni@mate.unlp.edu.ar)

Autors:

Antezana Jorge (IAM-CMalp; antezana@mate.unlp.edu.ar);
 Ghiglioni Eduardo (IAM-CMalp; eghiglioni@mate.unlp.edu.ar);
 Stojanoff Demetrio (IAM-CMalp; demetrio@mate.unlp.edu.ar).

Consider the Lie group of $n \times n$ complex unitary matrices $\mathcal{U}(n)$ endowed with the bi-invariant Finsler metric given by the spectral norm,

$$\|X\|_u = \|U^*X\|_\infty = \|X\|_\infty$$

for any X tangent to a unitary operator U . Given two points in $\mathcal{U}(n)$, in general there exists infinitely many curves of minimal length. In this talk we will provide a complete description of such curves. As a consequence of this description, we conclude that there is a unique curve of minimal length between U and V if and only if the spectrum of U^*V is contained in a set of the form $\{e^{i\theta}, e^{-i\theta}\}$ for some $\theta \in [0, \pi)$. This is similar to the result obtained by Lim in [6] in the case of positive operators endowed with the Thompson metric. Let's recall that the Grassmannian can be modeled as a submanifold of the unitary group (identifying a subspace with the associated orthogonal symmetry). Using this idea we also describe all minimal curves connecting two projections P and Q such that $\|P - Q\|_\infty < 1$.

Now consider the cone of $n \times n$ positive invertible matrices $\mathcal{G}l(n)^+$ endowed with the bi-invariant Finsler metric given by the trace norm,

$$\|X\|_{1,A} = \|A^{-1/2}XA^{-1/2}\|_1$$

for any X tangent to $A \in \mathcal{G}l(n)^+$. In this context, given two points $A, B \in \mathcal{G}l(n)^+$, there also exists infinitely many curves of minimal length. In this case we get the characterization by lifting the problem to the space of hermitian matrices $\mathcal{H}(n)$. So, firstly we provide a characterization of the minimal paths joining $X, Y \in \mathcal{H}(n)$, if the length of a curve $\alpha : [a, b] \rightarrow \mathcal{H}(n)$ is measure by

$$L(\alpha) = \int_a^b \|\dot{\alpha}(t)\|_1 dt.$$

Once the characterization of the minimal curves is given for $\mathcal{H}(n)$, the characterization in $\mathcal{G}l(n)^+$ can be obtained using the Exponential Metric Increasing property. On the other hand for $\mathcal{U}(n)$ the above lifting argument also works in one direction. Indeed, using the same idea as in the case of $\mathcal{G}l(n)^+$, we prove that a minimal curve in $\mathcal{H}(n)$ leads to a minimal curve in $\mathcal{U}(n)$ by means of the exponential map. So our characterization in $\mathcal{H}(n)$ give us a way to construct minimal paths in the group of unitary matrices $\mathcal{U}(n)$.

In [6] Lim also studied the sets of midpoints

$$\mathcal{M}_t(A, B) = \{C \in \mathcal{G}l(n)^+ : d_\infty(A, C) = t d_\infty(A, B), d_\infty(C, B) = (1 - t) d_\infty(A, B)\}.$$

In this talk we will study the set of midpoints in all the previous contexts. We will prove that this set is geodesically convex for $\mathcal{G}l(n)^+$ for any unitarily invariant norm. This was already prove in [6] but we will use a different technique. The same idea turns out to work to prove that the set of midpoints set is geodesically convex for $\mathcal{H}(n)$ endowed with any unitarily invariant norm and for the spectral norm between two unitary matrices U and V provided $\|U - V\|_\infty < 1$.

References

- [1] Andruschow E., Larotonda G., The rectifiable distance in the unitary Fredholm group. *Studia Math.* 196 (2010) 151-178.
- [2] Antezana J., Larotonda G., Varela A., Optimal paths for symmetric actions in the unitary group, *Comm. Math. Phys.* 328 (2014), no. 2, 481-497.
- [3] Bhatia R., On the exponential metric increasing property, *Linear Algebra Appl.* 375 (2003) 211-220.
- [4] Corach, G.; Porta, H.; Recht, L. A geometric interpretation of Segal's inequality $\|e^{X+Y}\| \leq \|e^{X/2}e^Ye^{X/2}\|$. *Proc. Amer. Math. Soc.* 115 (1992), no. 1, 229–231.
- [5] Halmos P.R.: Two subspaces. *Trans. Am. Math. Soc.* 144, 381-389 (1969).
- [6] Lim Y., Geometry of midpoint sets for Thompson's metric, *Linear Algebra Appl.* 439 (2013), 211-227.
- [7] Nussbaum R.D., Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations, *Differ. Integral Equ.* 7 (1994) 1649-1707.
- [8] Porta H., Recht L., Minimality of geodesics in Grassmann manifolds, *Proc. Amer. Math. Soc.* 100 (1987), 464-466.