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Talet är tänkandets början och slut.
Med tanken föddes talet.
Utöfver talet n̊ar tanken icke.

Numbers are the beginning and end of thinking.
With thoughts were numbers born.
Beyond numbers thought does not reach.

Magnus Gustaf Mittag-Leffler, 1903
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Abstract

In this thesis we consider means of several positive definite matrices based on
the 2-variable forms of mean functions. In other words the problem is to extend
a 2-variable mean to multiple variables. Our basis of study will be the Kubo-
Ando theory of 2-variable matrix means. This theory has been formulated in
1980 and since then it has been an open problem to provide an axiomatic theory
of multiple variable matrix means. Here we give three different axiomatic ex-
tensions for every possible 2-variable matrix mean and thus providing a solution
to the extension problem.

Two of these extension methods were considered quite recently by Ando-Li-
Mathias and Bini-Meini-Poloni. Both of these methods are based on so called
symmetrization procedures that extends a mean function to n+1 variables as a
limit using the n-variable forms of the mean function. The applicability of these
two procedures were proved only for the geometric mean by these researchers.
Proving applicability means showing the convergence of the process to a limit
point for all n, where n denotes the number of matrices. These two procedures
mentioned above are defined recursively, so we get the n+1-variable mean as
a limit point of a process that depends on the n-variable form of the mean
function. This potentially leads to computational problems, since it seems to
be almost impossible to get an explicit formula for the mean function even for 3
matrices. Therefore we study here a third procedure as well first considered by
the author which directly extends from the 2-variable formulas of matrix means,
since these mean are explicitly given by the Kubo-Ando theory. Although we
end up with a mean that is much easier to compute, we have to pay the price,
we loose permutation invariancy of the n-variables. We also prove that the
procedure converges for all possible 2-variable matrix means.

This direct process may be considered on complete metric spaces as well so
that it provides a mean function in this setting. The 2-variable formulas are
understood here as the unique metric midpoints between any two points of the
metric space. The aforementioned procedures were also considered before in
complete metric spaces of nonpositive curvature. Here we advance further by
proving applicability of the procedure for complete metric spaces with certain
upper curvature bounds, i.e. we let the curvature to take positive values as well.
Since these problems are more natural in this metric geometric setting we will
also investigate the problem of finding all possible matrix means that are metric
midpoints on certain affinely connected manifolds. During this process we will
completely classify all such matrix means and their corresponding manifolds.

In the metric geometric setting one also faces the problem of finding the
center of mass of points. The same problem can also be found in the case of
the geometric mean of matrices. Certain real life problems end up with the
calculation of the center of mass. This leads us to the practical applications of
our results, since the new results can be used to approximate the center of mass
in metric spaces.
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1 Introduction

The use of certain mean functions dates back to the antiquities. For example
the three Pythagorean means, the arithmetic mean

A(x1, . . . , xn) =

∑n
i=1 xi
n

, (1.1)

the geometric mean

G(x1, . . . , xn) = n

√√√√ n∏
i=1

xi, (1.2)

and the harmonic

H(x1, . . . , xn) =

(∑n
i=1 x

−1
i

n

)−1

(1.3)

of positive real numbers have been well known since the ancient Greeks. Several
properties of these means have been long known as well, for instance the chain of
inequalities H(x1, . . . , xn) ≤ G(x1, . . . , xn) ≤ A(x1, . . . , xn) between them, the
permutation invariance in their variables and that they are monotone functions
in their variables.

In the 1970s and 80s researchers in matrix theory started to consider means
of positive definite matrices, due to their usage in electric circuits theory [2, 3, 4].
A so called n-pole is the generalization of the resistor, which is a 2-pole, but with
n-poles. In this case if we consider the currents and potentials (with respect to
a reference point) at each node, by assuming linearity of the system, we have a
matrix correspondence between the vector formed by the currents at each node
I and the vector of potentials U as U = RI, where R is an n-by-n matrix and
it is called the resistance matrix of the network. Suppose we choose n/2 of
the poles as input poles and another n/2 as output poles. Then it is possible
to consider the series connection of two n-poles and one may ask the question
what is the overall resistance matrix of the network. It will be two times the
arithmetic mean A+B

2 of the two resistance matrices. If we consider parallel
connection then the overall resistance matrix will be two times the harmonic
mean 2(A−1 +B−1)−1 of the two resistance matrices.

The generalization of these two means of positive definite matrices to several
variables is straightforward, we just have to use the several variable formulas
mentioned above for numbers. However it turns out that even the 2-variable
version of the geometric mean of positive matrices is not straightforward. At first
glance we have the problem of non commutativity of the matrix multiplication
therefore the scalar formula is not permutation invariant. There are also other
more serious problems with the classical formula that we will discuss later.

So, all in all, it was the study of electrical networks that derived the interest
in means of positive matrices. Several 2-variable functions were considered
as candidates of mean functions of two positive matrix. Basic requirements
were posed for such functions, for instance monotonicity in their variables and
continuity. These basic requirements led to the theory of Kubo and Ando, which
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Figure 1: Parallel connection of two n-poles.

Figure 2: Series connection of two n-poles.
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described 2-variable matrix means completely, by providing a characterization
of each matrix mean by an operator monotone function. These functions have
very strong analytical properties that we will discuss in the following section.

Kubo-Ando theory has been formulated in [36] in 1980, but since then, it
was an open problem to provide an axiomatic characterization of all n-variable
matrix means based on the 2-variable formulas. We will solve this problem
here by providing three different extensions for all 2-variable matrix means in
Section 7. One of these extensions will also be considered in a metric geometric
setting in Section 5, yielding us an n-variable mean in complete metric spaces
with some upper curvature bounds. Also in Section 6 we will find out when is a
symmetric matrix mean a midpoint operation on a certain manifold and during
this process we will carry out a previously unknown one, real parameter family
of affinely connected manifolds that have a midpoint operation which is also a
matrix mean. In the next section we build up the theory of operator monotone
functions and use it to carry out the theory of 2-variable matrix means of Kubo
and Ando in Section 3. After this we will move on to the study of the geometric
mean in Section 4. In Section 4 we will meet with the recent diverse ideas of
researchers that have been used to extend the 2-variable geometric mean to
several variables. After Section 4 we will concentrate on the new results of
the author. Section 9 contains the main results that were carried out by the
author in the same order that they appear in this thesis. All new theorems and
definitions of the author will be indicated by the name of the author and the
corresponding publication.

2 Operator Monotone Functions

In this section we will follow the lines of [9]. First of all we define functions of
hermitian matrices.

Definition 2.1. Let f be a real function on an interval I. If D is a diago-
nal matrix D = diag(λ1, . . . , λn) with entries λi belonging to I, then f(D) =
diag(f(λ1), . . . , f(λn)). If A is hermitian, then we use the spectral theorem and
choose unitary U to have A = U∗DU , where D is diagonal, and then define
f(A) = U∗f(D)U .

We will use the partial order ≥ on the set of hermitian matrices defined as
B ≥ A if and only if B − A is positive semi-definite, that is 〈x, (B −A)x〉 ≥ 0
for all vectors x, 〈·, ·〉 denoting the usual hermitian inner product.

Definition 2.2 (Operator Monotone Function). A function f is matrix mono-
tone of order n (or matrix n-monotone) if for all n×n hermitian matrices B ≥ A
we have f(B) ≥ f(A). If f is monotone for all order n, then it is said to be
operator monotone (or matrix monotone).

Similarly to the real case, we have convexity and concavity of functions.
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Definition 2.3 (Operator Convexity/Concavity). A function f is matrix con-
vex if and only if for all hermitian matrices A,B and real 0 ≤ λ ≤ 1 we have

f((1− λ)A+ λB) ≤ (1− λ)f(A) + λf(B). (2.1)

If f is continuous as well, then this condition is equivalent to requiring

f

(
A+B

2

)
≤ f(A) + f(B)

2
. (2.2)

Conversely we say that a function f is operator concave if −f is operator convex,
that is, we have reversed inequalities above for f .

It is obvious that the set of operator monotone and the set of operator convex
functions are closed under taking convex combinations, and taking pointwise
limits of functions. One might also suspect that being operator monotone of
order n for a fixed order is less restrictive than being so for all orders. Actually
this is true, but in our case we will be focusing on functions which are operator
monotone for all orders, since these functions have very strong properties that
we will exhibit later in this section.

We will use further notations, ρ(A) will denote the spectral radius of an
arbitrary operator A, i.e.

ρ(A) = max {|λ| : λ is an eigenvalue of A} , (2.3)

while ‖A‖ will denote its operator norm, ‖A‖ = sup‖x‖=1 ‖Ax‖. It is easy to
see that if A is positive, then A ≤ I if and only if ρ(A) ≤ 1. Also an operator
will be called a contraction if and only if ‖A‖ ≤ 1, equivalently A∗A ≤ I.

Lemma 2.1. If B ≥ A, then for every operator X we have X∗BX ≥ X∗AX.

Proof. For arbitrary vector r we have

〈r,X∗BXr〉 = 〈Xr,BXr〉 ≥ 〈Xr,AXr〉 = 〈r,X∗AXr〉 . (2.4)

The two functions below provide our first easy examples of operator mono-
tone functions.

Proposition 2.2. The function f(t) = −1/t is operator monotone on (0,∞),
while g(t) = t1/2 is operator monotone on [0,∞).

Proof. The operator monotonicity of f follows from the order-reversing property
of multiplication by −1 and taking inverses.

For g let B ≥ A ≥ 0 and suppose that B is invertible. Then

1 ≥
∥∥∥A1/2B−1/2

∥∥∥ ≥ ρ(A1/2B−1/2) = ρ(B−1/4A1/2B−1/4), (2.5)

that is I ≥ B−1/4A1/2B−1/4, so B1/2 ≥ A1/2. If B is not invertible then B+ εI
is for all ε > 0. Repeating the above argument and letting ε→ 0 we obtain the
operator monotonicity of g on [0,∞) as well.
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2.1 Some Properties

Let K be a contraction. Let L = (I −KK∗)1/2 and L = (I −K∗K)1/2. Then
the operators U, V given as

U =

[
K L
M −K∗

]
, V =

[
K −L
M K∗

]
(2.6)

are unitary. Also for 0 ≤ λ ≤ 1

W =

[
λ1/2I −(1− λ)1/2I

(1− λ)1/2I λ1/2I

]
(2.7)

is unitary as well.

Theorem 2.3. Let I be an interval with 0 ∈ I and f be a real function on I.
Then the following are equivalent:

1. f is operator convex on I and f(0) ≤ 0.

2. f(K∗AK) ≤ K∗f(A)K for all contractions K and hermitian A with eigen-
values in I.

3. f(K∗1AK1 +K∗2BK2) ≤ K∗1f(A)K1 +K∗2f(B)K2 for all operators K1,K2

such that K∗1K1 +K∗2K2 ≤ I and for all hermitian A,B with eigenvalues
in I.

4. f(PAP ) ≤ P (A)P for all projections P and hermitian A with eigenvalues
in I.

Proof. (1) ⇒ (2): Let T =

[
A 0
0 0

]
and let U, V be unitary operators defined

in (2.6). Then

U∗TU =

[
K∗AK K∗AL
LAK LAL

]
, V ∗TV =

[
K∗AK −K∗AL
−LAK LAL

]
, (2.8)

so [
K∗AK 0

0 LAL

]
=
U∗TU + V ∗TV

2
(2.9)

and [
f(K∗AK) 0

0 f(LAL)

]
= f

(
U∗TU + V ∗TV

2

)
≤

≤ f(U∗TU) + f(V ∗TV )

2
=
U∗f(T )U + V ∗f(T )V

2
=

=
1

2

{
U∗
[
f(A) 0

0 f(0)

]
U + V ∗

[
f(A) 0

0 f(0)

]
V

}
≤

≤ 1

2

{
U∗
[
f(A) 0

0

]
U + V ∗

[
f(A) 0

0 0

]
V

}
=

=

[
K∗f(A)K 0

0 Lf(A)L

]
.

(2.10)
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That is f(K∗AK) ≤ K∗f(A)K.

(2) ⇒ (3): Let T =

[
A 0
0 0

]
,K =

[
K1 0
K2 0

]
. Then K is a contraction.

We have

K∗TK =

[
K∗1AK1 +K∗2BK2 0

0 0

]
, (2.11)

so [
f(K∗1AK1 +K∗2BK2) 0

0 f(0)

]
= f(K∗TK) ≤ K∗f(T )K =

=

[
K∗1f(A)K1 +K∗2f(B)K2 0

0 f(0)

]
.

(2.12)

(3) ⇒ (4) is trivial.
(4) ⇒ (1): Let A,B be hermitian with eigenvalues in I and 0 ≤ λ ≤ 1. Let

T =

[
A 0
0 0

]
, P =

[
I 0
0 0

]
and let W be the unitary operator defined by

(2.7). Then

PW ∗TWP =

[
λA+ (1− λ)B 0

0 0

]
, (2.13)

so [
f(λA+ (1− λ)B) 0

0 f(0)

]
= f(PW ∗TWP ) ≤ Pf(W ∗TW )P =

= PW ∗f(T )WP =

[
λf(A) + (1− λ)f(B) 0

0 0

]
,

(2.14)

so f is operator convex, and f(0) ≤ 0.

Theorem 2.4. Let f be a function mapping [0,∞] into itself. Then f is oper-
ator monotone if and only if it is operator concave.

Proof. Suppose f is operator monotone. If f(K∗AK) ≥ K∗f(A)K for all pos-
itive A and contraction K, then from Theorem 2.3 it would follow that f is

operator concave. Let T =

[
A 0
0 0

]
and let U be the unitary operator defined

by (2.6). Then U∗TU =

[
K∗AK K∗AL
LAK LAL

]
. We can find λ > 0 for any ε > 0

such that

U∗TU ≤
[
K∗AK + εI 0

0 λI

]
. (2.15)

Replace T by f(T ) to get[
K∗f(A)K K∗f(A)L
Lf(A)K Lf(A)L

]
≤
[
f(K∗AK + εI) 0

0 f(λ)I

]
(2.16)
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by the operator monotonicity of f . Since ε is arbitrary we have K∗f(A)K ≤
f(K∗AK).

Conversely, let f be operator concave. Let 0 ≤ A ≤ B. Then for any
0 < λ < 1 we have

λB = λA+ (1− λ)
λ

1− λ
(B −A). (2.17)

Operator concavity of f then yields

f(λB) ≥ λf(A) + (1− λ)f

(
λ

1− λ
(B −A)

)
. (2.18)

Now f(X) is positive for every positive X, so f(λB) ≥ λf(A) that is, by letting
λ→ 1, f(B) ≥ f(A).

Corollary 2.5. Let f be a continuous function from (0,∞) to itself. Then if f
is operator monotone then g(t) = 1/f(t) is operator convex.

Corollary 2.6. Let I be an interval such that 0 ∈ I, and let f be a real function
on I with f(0) ≤ 0. Then for every hermitian A with spectrum in I and for all
projections P

f(PAP ) ≤ Pf(PAP ) = Pf(PAP )P . (2.19)

Corollary 2.7. Let f be a continuous real fucntion on [0,∞). Then for all
positive operators A and projections P

f
(
A1/2PA1/2

)
A1/2P ≤ A1/2Pf(PAP ). (2.20)

Theorem 2.8. Let f be a real function on the interval [0, α). Then the following
are equivalent:

1. f is operator convex and f(0) ≤ 0.

2. g(t) = f(t)/t is operator monotone on (0, α).

Proof. (1) ⇒ (2): Let 0 < A ≤ B be matrices. Then 0 < A1/2 ≤ B1/2, so
B−1/2A1/2 is a contraction by using the operator monotonicity of the square
root function, so using Theorem 2.3

f(A) = f(A1/2B−1/2BB−1/2A1/2) ≤ A1/2B−1/2f(B)B−1/2A1/2, (2.21)

which implies that

A−1/2f(A)A−1/2 ≤ B−1/2f(B)B−1/2. (2.22)

This is equivalent to A−1f(A) ≤ B−1f(B), in other words, g is operator mono-
tone.

(2) ⇒ (1): Since g is operator monotone on (0, α), we have f(0) ≤ 0. We
will show that f satisfies condition (4) of Theorem 2.3. Let P be an arbitrary
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projection and let A be positive with eigenvalues in (0, α). Then there exists
an ε > 0 such that (1 + ε)A has all its eigenvalues in (0, α) as well. Now
(1 + ε)P ≤ (1 + ε)I, so A1/2(P + εI)A1/2 ≤ (1 + ε)A. So considering the
operator monotonicity of g we get

A−1/2(P + εI)−1A−1/2f
(
A1/2(P + εI)A1/2

)
≤ (1 + ε)−1A−1f ((1 + ε)A)

A−1/2f
(
A1/2(P + εI)A1/2

)
A1/2(P + εI) ≤

≤ (1 + ε)−1(P + εI)f ((1 + ε)A) (P + εI).

(2.23)

Letting ε→ 0, this gives

A−1/2f
(
A1/2PA1/2

)
A1/2P ≤ Pf (A)P . (2.24)

By the previous two corollaries, we get

f(PAP ) ≤ Pf(A)P . (2.25)

To advance further, we have to introduce some further notations related to
derivatives of certain functions.

Definition 2.4 (Divided Differences). Let f be a continuously differentiable
function. Then the function f [1] is defined as

f [1](λ, µ) =
f(λ)− f(µ)

λ− µ
, if λ 6= µ,

f [1](λ, µ) = f ′(λ), if λ = µ.

(2.26)

The function f [1](λ, µ) is called the first divided differences of f at (λ, µ). If Γ is
a diagonal matrix with diagonal entries λi, then we denote by f [1](Γ) the matrix
whose (i, j) entry is f [1](λi, λj) and if A = U∗DU is hermitian with unitary U
and diagonal D, then f [1](A) = U∗f [1](D)U .

Similarly we define second divided differences f [2] for a twice continuously
differentiable function f as

f [2](λ1, λ2, λ3) =
f [1](λ1, λ2)− f [1](λ1, λ3)

λ2 − λ3
(2.27)

for distinct λ1, λ2, λ3, otherwise we define

f [2](λ, λ, λ) =
1

2
f ′′(λ) (2.28)

by using continuity.

12



We will consider the derivative of functions considered over the space of
hermitian matrices. That is

Definition 2.5. We call a function f Fréchet-differentiable at A if there exists
a linear operator Df [A] on the space of hermitian matrices such that for all H

‖f(A+H)− f(A)−Df [A][H]‖ o(‖H‖). (2.29)

Then the linear operator Df [A] is called the Fréchet-differential or derivative of
f at A. It follows that if f has a derivative at A, then

Df [A][H] =
d

dt

∣∣∣∣
t=0

f(A+ tH). (2.30)

Now we will exhibit the connection between the derivative Df [A] and the
matrix f [1](A).

Lemma 2.9. Let f be a polynomial. Then for all diagonal Γ and hermitian
matrix H, we have

Df [Γ][H] = f [1](Γ) ◦H, (2.31)

where ◦ denotes the Schur-product.

Proof. Both sides of (2.31) is linear in f , so it is enough to prove it for powers.
So let f(t) = tn. Then

Df [Γ][H] =

n∑
k=1

Γk−1HΓn−k. (2.32)

This is a matrix with (i, j) entries equal to
∑n
k=1 Γk−1

ii Γn−kjj Hij . We also have

that the (i, j) entry of f [1](Γ) is
∑n
k=1 Γk−1

ii Γn−kjj .

Corollary 2.10. Let f be a polynomial. Then if A = UΓU∗

Df [A][H] = U
[
f [1](Γ) ◦ U∗HU

]
U∗. (2.33)

Proof. Since

d

dt

∣∣∣∣
t=0

f(UΓU∗ + tH) = U

[
d

dt

∣∣∣∣
t=0

f(Γ + tU∗HU)

]
U∗, (2.34)

and the assertion follows from Lemma 2.9.

Theorem 2.11. Let f ∈ C1(I) and A a hermitian matrix with eigenvalues in
I. Then

Df [A][H] = f [1](A) ◦H, (2.35)

where ◦ denotes the Schur-product in a basis where A is diagonal.
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Proof. Let A = UΓU∗, where Γ is diagonal. We claim that

Df [A][H] = U
[
f [1](Γ) ◦ U∗HU

]
U∗. (2.36)

We have already proved this for all polynomials. Now we prove it for all f ∈ C1.
Let us denote the right hand side of (2.36) by df [A][H]. By definition df [A]

is a linear map on hermitian matrices. Also all entries of the matrix f [1](Γ) are
bounded by max|t|≤‖A‖ by the mean value theorem. Hence

‖df [A][H]‖ ≤ max
|t|≤‖A‖

‖H‖ . (2.37)

Let H be a hermitian matrix with such norm that the eigenvalues of A + H
are in I. Choose a closed interval [a, b] in I such that the eigenvalues of A and
A+H are contained in it. Choose a sequence of polynomials such that fn → f
and f ′n → f ′ uniformly on [a, b]. Let L be the line segment connecting A and
A + H in the space of hermitian matrices. Now the mean value theorem for
Fréchet derivatives yields∥∥fm(A+H)− fn(A+H)− f(A) + fn(A)

∥∥ ≤
≤ ‖H‖ sup

X∈L
‖Dfm(X)−Dfn(X)‖ =

= ‖H‖ sup
X∈L
‖dfm(X)− dfn(X)‖ ,

(2.38)

since Dfn = dfn holds.
Let ε be any positive real number. Then by (2.37) there exists a positive

integer N0 such that for all m,n ≥ N0

sup
X∈L
‖dfm(X)− dfn(X)‖ ≤ ε

3
(2.39)

and also
sup
X∈L
‖dfn(A)− df(A)‖ ≤ ε

3
(2.40)

hold. Let m→∞ and use (2.38) and (2.39) to obtain

‖f(A+H)− f(A)− (fn(A+H)− fn(A))‖ ≤ ε

3
‖H‖ . (2.41)

If ‖H‖ is sufficiently small, then by the definition of the Fréchet derivative

‖fn(A+H)− fn(A)− dfn[A][H]‖ ≤ ε

3
‖H‖ , (2.42)

so we have, using the triangle inequality

‖fn(A+H) −fn(A)− df [A][H]‖ ≤
≤‖f(A+H)− f(A)− (fn(A+H)− fn(A))‖+

+ ‖fn(A+H)− fn(A)− dfn[A][H]‖+

+ ‖(df [A]− dfn[A])[H]‖ ,

(2.43)

14



and use the above estimations to conclude that

‖f(A+H)− f(A)− df [A][H]‖ ≤ ε ‖H‖ , (2.44)

which is Df [A] = df [A] for sufficiently small ‖H‖.

Theorem 2.12. Let f ∈ C1(I). Then f is operator monotone on I if and only
if, for every hermitian matrix A with eigenvalues in I, f [1](A) is positive.

Proof. Let f be operator monotone, and let A be hermitian with eigenvalues
in I. Let H be the matrix with 1 entries. H is positive and A + tH ≥ 0 if
t ≥ 0, hence f(A + tH) − f(A) is positive for small t, so Df [A][H] ≥ 0. So
f [1](A) ◦H ≥ 0 by Theorem 2.11, in other words f [1](A) ≥ 0.

For the converse implication, let A ≥ B be hermitian with eigenvalues in
I. Let X(t) = (1 − t)A + tB, for 0 ≤ t ≤ 1, so X(t) has eigenvalues in I as
well. So by assumption f [1](X(t)) ≥ 0 for all t. Since X ′(t) = B − A ≥ 0 and
the Schur-product of two positive matrices is positive, f [1](X(t)) ◦X ′(t) is also
positive. By the previous theorem f [1](X(t)) ◦X ′(t) = Df [X(t)][X ′(t)], so

f(B)− f(A) = f(X(1))− f(X(0)) =

∫ 1

0

f [1](X(t)) ◦X ′(t)dt ≥ 0. (2.45)

Lemma 2.13. If f is continuous and operator monotone of (−1, 1), then for
each −1 ≤ λ ≤ 1, the function gλ(t) = (t+ λ)f(t) is operator convex.

Proof. We will use Theorem 2.8 to prove this. Assume that f is operator mono-
tone and continuous on [−1, 1]. Then the function f(t−1) is operator monotone
on [0, 2). Let g(t) = tf(t − 1), so g(0) = 0 and g(t)/t is operator monotone on
(0, 2). So by Theorem 2.8 g(t) is operator convex on [0, 2), which in turn im-
plies that the function h1(t) = g(t + 1) = (t + 1)f(t) is operator convex on
[−1, 1). If we apply the same argument for −f(−t) which happens to be opera-
tor monotne as well on [−1, 1], we see that the function h2(t) = −(t+ 1)f(−t)
is operator convex as well on [−1, 1). So changing signes of t preserves convex-
ity, therefore the function h3(t) = h2(−t) is also operator convex. Hence for
|λ| ≤ 1, gλ(t) = 1+λ

2 h1(t) + 1−λ
2 h2(t) is also operator convex, since its a convex

combination of operator convex functions.
For operator monotone and continuous f on (−1, 1), the function f((1− ε)t)

is continuous and operator monotone on [−1, 1] for all ε > 0. So by the argument
above (t + λ)f((1 − ε)t) is operator convex. So by letting ε → 0 we get that
(t+ λ)f(t) is operator convex.

The next theorem shows that every operator monotone function is necessarily
continuously differentiable on its domain. This is the first step toward exhibiting
the strong smoothness properties of such functions. In order to be able to
prove this assertion we have to introduce a new tool. This is essentially a
smoothing technique, the so called regularization of a function using mollifiers
and convolution.
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Definition 2.6 (Mollifier). Let φ be a real function of C∞ class with the
following properties: φ ≥ 0, φ is even, the support of φ is [−1, 1] and

∫
φ = 1.

For each ε > 0 let φε(x) = 1
εφ
(
x
ε

)
. Then the support of φ is [−ε, ε] and φε has

all the other properties listed above. The functions φε are called mollifiers.

Definition 2.7 (Regularization). If f is locally integrable function, then

fε(x) = (f ∗ φε)(x) =

∫
f(x− y)φε(y)dy (2.46)

is defined to be its regularization.

The following nice properties are fulfilled by the family fε:

1. Every fε is a C∞ function.

2. If the support of f is contained in a compact set, then the support of fε
is contained in an ε-neighborhood of the same compact set.

3. If f is continuous at x0 then f(x0) = limε↓x0 fε(x0).

4. If f has a first order singularity at x0, then limε↓x0
fε(x0) = f(x0+)+f(x0−)

2 .

5. If f is continuous at x, then fε(x) converges to f(x) uniformly on every
compact set, as ε→ 0.

6. If f is differentiable, then (fε)
′ = (f ′)ε.

7. If f is monotone, then f ′ε(x)→ f ′(x) as ε→ 0, if f ′(x) exists.

Theorem 2.14. Every operator monotone function f on I is in the class C1.

Proof. Let fε be a regularization of f of order ε for 0 < ε < 1. Then fε is
in the class C∞ on (−1 + ε, 1 − ε). It is also clearly operator monotone. Let

f̄(t) = limε→0 fε(t). Then f̄(t) = f(t+)+f(t−)
2 .

Now let gε(t) = (t + 1)fε(t). Then by Lemma 2.13, gε is operator convex.
Let ḡ(t) = limε→0 gε(t), then also ḡ(t) is operator convex. Since every convex
function is continuous, therefore ḡ(t) is continuous as well. This in turn implies
that f̄(t) is continuous, which tells us that f̄(t) = f(t), hence f(t) is continuous.

Let g(t) = (t + 1)f(t). Then g is a convex function on I, so it is left and
right differentiable and the one-sided derivatives satisfy the properties

g′−(t) ≤ g′+(t), lim
s↓t

g′±(s) = g′+(t), lim
s↑t

g′±(s) = g′−(t). (2.47)

But g′±(t) = f(t) + (t + 1)f ′±(t), and since t + 1 > 0 the derivatives f ′±(t) also
satisfy the above relations.

Let A =

[
s 0
0 t

]
, s, t ∈ (−1, 1). If ε is small enough, then s, t ∈ (−1 +

ε, 1 − ε). Since fε is operator monotone on this interval, the matrix f
[1]
ε (A) is

positive by Theorem 2.12, which implies that(
fε(s)− fε(t)

s− t

)2

≤ f ′ε(s)f ′ε(t). (2.48)
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Since fε → f uniformly on compact sets, fε(s) − fε(t) → f(s) − f(t). Also

f ′ε(s)→
f ′+(t)+f ′−(t)

2 , so the above inequality gives, taking the limit ε→ 0, that(
f(s)− f(t)

s− t

)2

≤ 1

4

[
f ′+(s) + f ′−(s)

] [
f ′+(t) + f ′−(t)

]
. (2.49)

Now as we let s ↓ t, and considering the fact that the derivatives of f satisfy
similar relations as (2.47), we get[

f ′+(t)
]2 ≤ 1

4

[
f ′+(t) + f ′−(t)

] [
f ′+(t) + f ′−(t)

]
, (2.50)

which implies that f ′+(t) = f ′−(t), so f is differentiable, and also f ′ satisfies
relations like (2.47), so it is continuous as well.

We move on to study properties of operator convex functions, which could
be done via the study of their second divided differences mentioned earlier in
the section. We state the following three propositions without proofs. Their
proofs involve some straightforward calculation or similar techniques discussed
earlier in the preceding assertions.

Proposition 2.15. If λ1, λ2, λ3 are distinct, then f [2](λ1, λ2, λ3) is the quotient
of the two determinants∣∣∣∣∣∣

f(λ1) f(λ2) f(λ3)
λ1 λ2 λ3

1 1 1

∣∣∣∣∣∣ and

∣∣∣∣∣∣
λ2

1 λ2
2 λ2

3

λ1 λ2 λ3

1 1 1

∣∣∣∣∣∣ , (2.51)

so the function f [2] is permutation invariant in its variables.

Proposition 2.16. If f(t) = tn for n = 2, 3, . . . we have that

f [2](λ1, λ2, λ3) =
∑

0≤p,q,r
p+q+r=n−2

λp1λ
q
2λ
r
3. (2.52)

Proposition 2.17. Let f(t) = tn, for n ≥ 2 integer. Suppose that A is a diago-
nal matrix with eigenvalues λi and Pi denote the projections onto the coordinate
axes. Then for every hermitian H

d2

dt2

∣∣∣∣
t=0

f(A+ tH) = 2
∑

p+q+r=n−2

ApHAqHAr =

= 2
∑
i,j,k

f [2](λi, λj , λk)PiHPjHPk,
(2.53)

which also holds for all C2 function f .

Theorem 2.18. If f ∈ C2(I) and f is operator convex, then for each µ ∈ I the
function g(t) = f [1](µ, t) is operator monotone.
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Proof. Since f ∈ C2, g ∈ C1, therefore by Theorem 2.12, it is enough to show
that the matrix with (i, j) entries f [1](λi, λj) is positive for all λi ∈ I.

Choose any λ1, . . . , λn+1 ∈ I. Let A be diagonal with entries λ1, . . . , λn+1.
Since f is operator convex and it is in the C2 class, for every hermitian H,
d2

dt2

∣∣∣
t=0

f(A + tH) must be positive. Let Pi denote the projections onto the

coordinate axes, so we have an explicit expression for this in (2.53). Let H be
of the form 

0 0 · · · z̄1

0 0 · · · z̄2

· · · · · · ·
z1 z2 · · · zn 0

 , (2.54)

where zi are arbitrary complex numbers. Let x denote the (n + 1)-vector
(1, . . . , 1, 0). Then we have

〈x, PiHPjHPkx〉 = zkz̄iδj,n+1 (2.55)

for 1 ≤ i, j, k ≤ n+ 1 and δi,j is the Kronecker-symbol. So then we have by the

positivity of the matrix d2

dt2

∣∣∣
t=0

f(A+ tH) and the above that

0 ≤
∑

1≤i,j,k≤n+1

f [2](λi, λj , λk) 〈x, PiHPjHPkx〉 =

=
∑

1≤i,k≤n+1

f [2](λi, λn+1, λk)zkz̄i.
(2.56)

We also have that

f [2](λi, λn+1, λk) =
f [1](λn+1, λi)− f [1](λn+1, λk)

λi − λk
=

= g[1](λi, λk).

(2.57)

So we get that

0 ≤
∑

1≤i,k≤n+1

g[1](λi, λk)zkz̄i. (2.58)

Since zi is arbitrary, this is equivalent to the positivity of the matrix with (i, j)
entries g[1](λi, λj).

Corollary 2.19. If f ∈ C2(I), f(0) = 0 and f is operator convex, then the

function g(t) = f(t)
t is operator monotone.

Proof. By the above theorem f [1](0, t) is operator monotone, which is just f(t)/t
in this case.

Corollary 2.20. If f is operator monotone on I and f(0) = 0, then the function
g(t) = t+λ

t f(t) is operator monotone for all |λ| ≤ 1.
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Proof. Let us assume that f ∈ C2. By Lemma 2.13 the function gλ(t) = (t +
λ)f(t) is operator convex. By the previous corollary g(t) is operator monotone.
For the case if f is not in the class of C2, we consider its regularization fε, and
apply the same argument to fε(t)− fε(0), and then let ε→ 0.

Corollary 2.21. If f is operator monotone on I and f(0) = 0, then f is twice
differentiable at 0.

Proof. By the previous corollary, the function g(t) =
(
1 + 1

t

)
f(t) is operator

monotone, and by Theorem 2.14 it is continuously differentiable. Therefore the
function h(t) = 1

t f(t), h(0) := f ′(0) is continuously differentiable, which yields
that f is twice differentiable at 0.

2.2 Loewner’s Characterization

Consider all functions f on the interval I = (−1, 1) that are operator monotone
and satisfy the conditions

f(0) = 0, f ′(0) = 1. (2.59)

Let K be the collection of all such functions. Clearly, K is a convex set. We will
show that this set is compact in the topology of pointwise convergence and will
find its extreme points. This will enable us to write an integral representation
for functions in K.

Lemma 2.22. If f ∈ K, then

f(f) ≤ t

1− t
for 0 ≤ t < 1,

f(f) ≥ t

1 + t
for − 1 < t < 0,

|f ′′(f)| ≤ 2.

(2.60)

Proof. Let A =

[
t 0
0 0

]
. Then by Theorem 2.12, the matrix

f [1](A) =

[
f ′(t) f(t)/t
f(t)/t 1

]
(2.61)

is positive. Hence
f(t)2

t2
≤ f ′(t). (2.62)

Let g±(t) = (t ± 1)f(t). By Lemma 2.13, both functions g±(t) are convex,
hence their derivatives are monotonically increasing functions. Since g′±(t) =
f(t) + (t± 1)f ′(t) and g′±(0) = ±1, this implies that

f(t) + (t− 1)f ′(t) ≥ −1 for t > 0

f(t) + (t+ 1)f ′(t) ≤ 1 for t < 0.
(2.63)
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Thus we obtain

f(t) + 1 ≥ (1− t)f(t)2

t2
for t > 0. (2.64)

Now suppose that for some 0 < t < 1 we have f(t) > t
1−t . Then f(t)2 > t

1−tf(t),

so from the above we get f(t)+1 > f(t)
t . But this gives the inequality f(t) < t

1−t ,

which contradicts our assumption. This shows that f(t) ≤ t
1−t for 0 ≤ t < 1.

The second inequality of the lemma is obtained by the same argument using the
other inequality.

We have already seen in the proof of Corollary 2.21 that

f ′(0) +
1

2
f ′′(0) = lim

t→0

(1 + t−1)f(t)− f ′(0)

t
. (2.65)

Let t ↓ 0 and use the first inequality of the lemma to conclude that this limit
is smaller than 2. Let t ↑ 0 and use the second inequality to conclude that it is
bigger than 0. Together these two imply that |f ′′(0)| ≤ 2.

Proposition 2.23. The set K is compact in the topology of pointwise conver-
gence.

Proof. Let fi be a net in K. By the above lemma the set fi(t) is bounded for
each t. So, by Thychonoff’s Theorem, there exists a subnet fik that converges
pointwise to a bounded function f . The limit function f is operator monotone
and f(0) = 0. We show that f ′(0) = 1 so that f ∈ K, and hence K is compact.

By Corollary 2.20 each of the functions
(
1 + 1

t

)
fi(t) is monotone on (−1, 1).

Since for all i, limt→0

(
1 + 1

t

)
fi(t) = f ′i(0) = 1, we see that

(
1 + 1

t

)
fi(t) ≥ 1

if t ≥ 0 and is ≤ 1 if t ≤ 0. Hence if t > 0 we have
(
1 + 1

t

)
f(t) ≥ 1, and if

t < 0 we have the opposite inequality. Since f is continuously differentiable,
this shows that f ′(0) = 1.

Proposition 2.24. All extreme points of K have the form

f(t) =
t

1− αt
, where α =

1

2
f ′′(0). (2.66)

Proof. Let f ∈ K. For each −1 < λ < 1 let

gλ(t) =

(
1 +

λ

t

)
f(t)− λ. (2.67)

By Corollary 2.20, gλ is operator monotone. Note that gλ(0) = 0, since f(0) = 0
and f ′(0) = 1. Also, g′λ(0) = 1 + 1

2λf
′′(0), so the function hλ defined as

hλ(t) =
1

1 + 1
2λf

′′(0)

[(
1 +

λ

t

)
f(t)− λ

]
(2.68)

is in K. Since |f ′′(0)| ≤ 2, we see that | 12λf
′′(0)| < 1. We can write

f =
1

2

[
1 +

1

2
λf ′′(0)

]
hλ +

1

2

[
1− 1

2
λf ′′(0)

]
h−λ. (2.69)
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So, if f is an extreme point of K, we must have f = hλ. This says that[
1 +

1

2
λf ′′(0)

]
f(t) =

(
1 +

λ

t

)
f(t)− λ, (2.70)

from which we have that

f(t) =
t

1− 1
2f
′′(0)t

. (2.71)

Theorem 2.25. For each f in K there exists a unique probability measure µ
on [−1, 1] such that

f(t) =

∫ 1

−1

t

1− λt
dµ(λ). (2.72)

Proof. For −1 ≤ λ ≤ 1, consider the functions hλ(t) = t
1−λt . By Proposi-

tion 2.24, the extreme points of K are included in the family hλ. Since K is
compact and convex, it is the closed convex hull of its extreme points by the
Krein-Milman Theorem. Finite convex combinations of elements of the family
{hλ : −1 ≤ λ ≤ 1} can also be written as

∫
hλdν(λ), where ν is a probability

measure on [−1, 1] with finite support. Since f is in the closure of these com-
binations, there exists a net νi of finitely supported probability measure on
[−1, 1] such that the net fi(t) =

∫
hλdνi(λ) converges to f(t). Since the space

of the probability measure is weak∗ compact, the net νi has an accumulation
point µ. In other words, a subnet of

∫
hλdνi(λ) converges to

∫
hλdµ(λ), so

f(t) =
∫
hλdµ(λ) =

∫
t

1−λtdµ(λ).
Now suppose that there are two measure µ1 and µ2 for which the representa-

tion (2.72) is valid. Expand the integrand as a power series t
1−λt =

∑∞
n=0 t

n+1λn

convergent uniformly in |λ| < 1 for every fixed t with |t| < 1. This shows that

∞∑
n=0

tn+1

∫ 1

−1

λndµ1(λ) =

∞∑
n=0

tn+1

∫ 1

−1

λndµ2(λ) (2.73)

for all |t| < 1. The identity theorem for power series shows that∫ 1

−1

λndµ1(λ) =

∫ 1

−1

λndµ2(λ) (2.74)

for all n = 0, 1, 2, . . ., which is only possible when µ1 = µ2.

We assumed that the normalizations (2.59) hold for K in order to make
the set K compact. At this point we may remove these conditions to get the
following

Corollary 2.26. Let f be a nonconstant operator monotone function on (−1, 1).
Then there exists a unique probability measure µ on [−1, 1] such that

f(t) = f(0) + f ′(0)

∫ 1

−1

t

1− λt
dµ(λ). (2.75)
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Proof. We have that f is monotone and nonconstant, so f ′(0) 6= 0. So the

function f(t)−f(0)
f ′(0) is in K.

The above corollary can be extended to any operator monotone function
over an arbitrary interval (a, b), since f is operator monotone on (a, b) if and
only if f

(
b−a

2 t+ a+b
2

)
is operator monotone on (−1, 1).

Using Corollary 2.26 we may also analytically extend an operator monotone
f on (−1, 1) by replacing t with complex z. In this way we may define f on the
whole complex plane excluding (−∞,−1] ∪ [1,∞). Since

= z

1− λz
=

=z
|1− λz|2

, (2.76)

so f maps the upper half-plane into itself and maps the lower half-plane into
itself as well. Similarly f(z) = f(z), so it is invariant under reflections over the
real line. The converse is also true, an analytic function that maps the upper
half-plane into itself and is analytically continued to the lower half-plane via
reflection across the real line, then it is operator monotone.

We will omit the further study of such functions in detail from the point of
view of complex analysis, since the characterization obtained so far is sufficient
for our purposes. Actually such analytically continued functions have a very rich
theory, one may consult the class of Pick functions and their characterization
due to a theorem of Nevanlinna [9].

Furthermore consider the following nice

Example 2.1. By contour integration using the Residuum Theorem we have that∫ ∞
0

λr−1

1 + λ
= π csc rπ, 0 < r < 1. (2.77)

By change of variables we obtain from this that

tr =
sin rπ

π

∫ ∞
0

t

t+ λ
λr−1dλ (2.78)

for all t > 0 and 0 < r < 1. That is, tr is operator monotone for all r ∈ [0, 1].

Actually it turns out that for other values of r, this function is not operator
monotone.

3 Matrix Means and Operator Monotone Func-
tions

In this section we present the theory of Kubo and Ando, which characterizes
matrix means by operator monotone functions. We denote by P(n,C) the open
convex cone of n×n positive definite matrices and by H(n,C) the space of n×n
hermitian matrices over the complex field C.
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Definition 3.1 (Matrix Mean). A two-variable function M : P(n,C)×P(n,C) 7→
P(n,C) is called a matrix mean if

(i) M(I, I) = I where I denotes the identity,

(ii) if A ≤ A′ and B ≤ B′, then M(A,B) ≤M(A′, B′),

(iii) CM(A,B)C ≤M(CAC,CBC),

(iv) if An ↓ A and Bn ↓ B then M(An, Bn) ↓M(A,B).

The above definition were considered by Kubo and Ando in [36]. Actually
they considered the above definition without the normalization property (i), and
called such functions an operator connection with notation AσB. For the case
of matrix means they included property (i) as well. An immediate consequence
of property (iii) is that for all invertible C we have

CM(A,B)C = M(CAC,CBC). (3.1)

Yet another consequence of the properties is that if A ≤ B then

A = M(A,A) ≤M(A,B) ≤M(B,B) = B. (3.2)

The importance of operator connections comes from electric circuit theory
as it was mentioned in the first section. A remarkable property of operator
connections is that they can be characterized by operator monotone functions.

Theorem 3.1 (Kubo-Ando [36]). For each connection σ and x > 0 real number,
the operator 1σx is a scalar. Furthermore the map, σ 7→ f , defined by

f(x) = 1σx (3.3)

for x > 0, is an affine order-isomorphism from the class of operator connections
onto the class of operator monotone functions.

Proof. Let σ be a connection. Suppose that P is a projection that commutes
with positive operators A and B. Then commutativity implies

PAP = AP ≤ A and PBP = BP ≤ B. (3.4)

Using property (ii) and (iii), it follows that

P (AσB)P ≤ (PAP )σ(PBP ) = (AP )σ(BP ) ≤ AσB, (3.5)

so the operator AσB − P (AσB)P is positive and also has a vanishing diagonal
block, hence

(I − P ) [AσB − P (AσB)P ]P , (3.6)

in other words P and AσB commute as well. Similarly P commutes with
(AP )σ(BP ), so what follows is that

[(AP )σ(BP )]P = (AσB)P . (3.7)
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Since each scalar commutes with all projections, so does the the operator
1σx, hence it is a scalar. So f(x) := 1σx defines a real function. We will
show that it is operator monotone. Let 0 ≤ A ≤ B be arbitrary with spectral
decompositions A =

∑
i aiPi and B =

∑
i biQi. Then it follows from (3.7) that

IσA =
∑
i

[Piσ(aiPi)]Pi =
∑
i

(1σai)Pi =
∑
i

f(ai)Pi = f(A), (3.8)

and similarly IσB = f(B), so by property (ii) we get f(A) ≤ f(B), i.e. f is
operator monotone. The above implies also using (3.1) that

AσB = A1/2f
(
A−1/2BA−1/2

)
A1/2. (3.9)

What remains to prove is that every operator monotone function is obtained
in the form (3.3). Let f be an operator monotone function. Then it has an
integral representation which can be written in the form

f(x) =

∫
[0,∞]

x(1 + t)

x+ t
dm(t) (3.10)

for x > 0 and m is a positive Radon measure. Then we define a binary operation
σ by

AσB = aA+ bB +

∫
(0,∞)

1 + t

t

(
(tA)−1 +B−1

)−1
dm(t), (3.11)

where a = m({0}) and b = m({∞}). Since
(
(tA)−1 +B−1

)−1
and aA + bB

satisfy conditions (ii), (iii) and (iv), the operation σ satisfies condition (ii) and
(iii) by convexity of the class of operator connections, while property (iv) is
proved by using the Monotone Convergence Theorem in measure theory, so σ
is a connection. Finally for x > 0

1σx = f(x) (3.12)

as well, so we obtain the function f from the connection.

By the above theorem we say that f is the representing function of a connec-
tion (or a mean if property (i) is fulfilled as well). In the case of matrix means
we have the normalization condition f(1) = 1, which follows from property (i).
Operator monotone functions which have that f(1) = 1 are called normalized
operator monotone functions. It is also trivial that matrix means fulfill the
property M(A,A) = A. Actually it turns out that a connection is a mean if
and only if its representing function’s Radon measure is a probability measure.

By the above integral representation we have the following

Corollary 3.2. Every connection σ has the following properties:

1. (AσB) + (CσD) ≤ (A+ C)σ(B +D).
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2. S∗(AσB)S ≤ (S∗AS)σ(S∗BS) for not necessarily hermitian S.

Definition 3.2. We say that a connection σ is symmetric if and only if AσB =
BσA for arbitrary positive A,B. Symmetricity is similarly defined for matrix
means as well.

Theorem 3.3. The map, n 7→ σ, defined by

AσB =
c

2
(A+B)+

∫
(0,1]

1 + t

2t

[(
(tA)−1 +B−1

)−1
+
(
A−1 + (tB)−1

)−1
]
dn(t),

(3.13)
where c = n({0}), establishes an affine isomorphism from the class of positive
Radon measures on the interval [0, 1] onto the class of symmetric connections.

Proof. The fact that (3.13) is a symmetric connection is straightforward. Con-
versely, let σ be a symmetric connection with representing function f . It is not
hard to see that f(x) = xf(1/x) (actually a connection is symmetric if and only
if this holds). Hence

f(x) =
f(x) + xf(1/x)

2
=

=
a+ b

2
(1 + x) +

∫
(0,∞)

(1 + t)

(
x

x+ t
+

x

xt+ 1

)
dm(t) =

=
a+ b

2
(1 + x) +

∫
(0,∞)

1 + t

2

(
x

x+ t
+

x

xt+ 1

)
dn(t),

(3.14)

where dn(t) = dm(t) + dm(t−1), and n({0}) = a+ b.
It remains to prove that a measure n producing σ is unique. We may consider

the measure dm(t) = 1
2dn(t) or dm(t) = 1

2dn(t−1) on [0,∞] according as 0 <
t < 1 or 1 < t <∞, and m({1}) = n({1}), m({0}) = m({∞}) = 1

2n({0}). Now
due to Theorem 3.1 and 2.25 the uniqueness of m, hence of n follows.

In the above theorem to a symmetric mean corresponds a probability mea-
sure. Thus we obtain

Theorem 3.4. Arithmetic mean is the maximum of all symmetric means, while
the harmonic mean is the minimum.

Proof. We have the inequality

2x

1 + x
≤ 1 + t

2

(
x

x+ t
+

x

xt+ 1

)
≤ 1 + x

2
(3.15)

for x, t > 0, which yields

2(A−1 +B−1)−1 ≤ 1 + t

2t

[(
(tA)−1 +B−1

)−1
+
(
A−1 + (tB)−1

)−1
]
≤ A+B

2
.

(3.16)
The integration with respect to the probability measure n yields the assertion.
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So far we have met with the two basic matrix means, the arithmetic mean
A+B

2 and the harmonic mean 2(A−1+B−1)−1. But what would be the geometric
mean of two positive matrices? Kubo-Ando theory tells us that we should choose
the representing operator monotone function t1/2, since the geometric mean of
1 and an arbitrary positive real number t is t1/2. This provides us the geometric
mean of two positive matrices

G(A,B) = A1/2
(
A−1/2BA−1/2

)1/2

A1/2. (3.17)

At first glance this does not seem to be symmetric, however it is easy to check
that it is so. It has other remarkable properties that we should study later,
for instance that it is the metric midpoint of the geodesic line connecting A
and B with respect to a Riemannian metric given on the differentiable manifold
P(n,C).

4 Extension of the Geometric Mean to Multiple
Variables

So far we have only met 2-variable matrix means. Kubo-Ando theory in the
preceding section exhaustively characterizes all matrix means by relating every
one of them to a normalized operator monotone function. The theory of operator
monotone functions is very rich, as we saw in section two, however no such theory
has been developed in several variables. A similar theory seems to be very far
away at the moment.

The problem to extend a 2-variable matrix mean to several variables is
straightforward if we consider the arithmetic or harmonic mean. In this case
the several variable formulas coincide with the scalar formulas. The arithmetic

mean is just
∑n
i=1Xi
n , while the harmonic mean is

(∑n
i=1X

−1
i

n

)−1

. Most of the

properties fulfilled by the 2-variable forms are inherited by these two several
variable functions. For instance operator monotonicity is preserved, we also
have invariance under permutations of the variables. Property (i), (iii) and (iv)
in Definition 3.1 are also preserved. This gives us the motivation of the following

Definition 4.1 (Multivariable Matrix Mean). Let M : P(r,C)n 7→ P(r,C).
Then M is called a matrix mean if the following conditions hold

1. M(X, . . . ,X) = X for every X ∈ P(r,C),

2. M(X1, . . . , Xn) is invariant under the permutation of its variables,

3. min(X1, . . . , Xn) ≤ M(X1, . . . , Xn) ≤ max(X1, . . . , Xn) if min and max
exist with respect to the positive definite order,

4. If Xi ≤ X ′i, then M(X1, . . . , Xn) ≤M(X ′1, . . . , X
′
n),

5. M(X1, . . . , Xn) is continuous,
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6. CM(X1, . . . , Xn)C∗ ≤M(CX1C
∗, . . . , CXnC

∗).

The above properties are fulfilled by the n-variable harmonic and arithmetic
mean. But what about the geometric mean (3.17)? It is not even straightfor-
ward anymore how to define the n-variable geometric mean. This is a nontrivial
problem, actually there are several competing definitions, which are indeed dif-
ferent and have nice properties. In order to understand these extensions, we
have to exhibit some of the special properties which are possessed by the geo-
metric mean. First of all the convex cone P(r,C) carries a unique Riemannian
structure which is related to the geometric mean.

4.1 The Riemannian Structure on P(r,C)

We will follow the lines of [11]. The set P(r,C) is an open subset of the vector
space of complex squared matrices, hence it is a differentiable manifold. This
vector space can be equipped with a norm called the Frobenius norm, which is
of the form

‖A‖2 =
√
Tr{A2}, (4.1)

where Tr denotes the trace of a squared matrix, that is TrA =
∑
iAi,i, where

Ai,j denotes the (i, j) entry of the matrix A. Note that the set H(r,C) is a real
vector space with the norm ‖·‖2 as well. Now consider the following Riemannian
metric

〈X,Y 〉p = Tr
{
p−1Xp−1Y

}
, (4.2)

where p ∈ P(r,C) and X,Y ∈ H(r,C). The above inner product is positive
definite for every p and is a smooth function in p. As it turns out, the tangent
space at every p is the space H(r,C). Using this Riemannian metric, we may
write it in the infinitesimal form

ds =
√
〈dp, dp〉p =

∥∥∥p−1/2dpp−1/2
∥∥∥

2
=
√
Tr {(p−1dp)2}. (4.3)

If we have a piecewise differentiable path γ : [a, b] in P(r,C), we define its length
by

L(γ) =

∫ b

a

∥∥∥γ−1/2(t)γ′(t)γ−1/2(t)
∥∥∥

2
dt. (4.4)

Now let us denote the group of invertible r×r matrices over the complex field by
GL(r,C). The first important property of the above defined metric is captured
in the following

Proposition 4.1. For each X ∈ GL(r,C) and for each differentiable path γ,
the transformation p 7→ X∗pX is an isometry of P(r,C), that is

L(γ) = L(X∗γX), (4.5)

and similarly the transformation p 7→ p−1 is also an isometry.
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Proof. We have for each t that∥∥∥(X∗γ(t)X)−1/2(X∗γ′(t)X)(X∗γ(t)X)−1/2
∥∥∥2

2
=

= Tr
{

(X∗γ(t)X)−1(X∗γ′(t)X)(X∗γ(t)X)−1(X∗γ′(t)X)
}

=

= Tr
{
X−1γ(t)−1γ′(t)γ(t)−1γ′(t)X

}
=

= Tr
{
γ(t)−1γ′(t)γ(t)−1γ′(t)

}
=

=
∥∥∥γ(t)−1/2γ′(t)γ(t)−1/2

∥∥∥2

2
.

(4.6)

A similar calculation leads to the same argument for the map p 7→ p−1 using
that the Fréchet differential of this is(

γ(t)−1
)′

= −γ(t)−1γ′(t)γ(t)−1. (4.7)

For any two points A,B ∈ P(r,C) we define the distance function

d(A,B) = inf {L(γ) : γ is a path from A to B} . (4.8)

Indeed it is a distance function, since the triangle inequality is fulfilled.
One of the crucial properties called the infinitesimal exponential metric in-

creasing property (IEMI) of this metric is captured in the following

Proposition 4.2 (IEMI). For all X,Y ∈ H(r,C) we have∥∥∥exp(X)−1/2D exp[X][Y ] exp(X)−1/2
∥∥∥

2
≥ ‖Y ‖2 , (4.9)

where D exp[X] denotes the Fréchet derivative of exp.

Proof. Let X have eigenvalues denoted by λi. Then by Theorem 2.11

exp(X)−1/2D exp[X][Y ] exp(X)−1/2 =

= diag(exp(−λi/2)) exp[1](X) ◦ Y diag(exp(−λi/2)) =

=

exp
(
λi−λj

2

)
− exp

(
−λi−λj2

)
λi − λj

 (4.10)

and the assertion follows form the fact that exp(t/2)−exp(−t/2)
t ≥ 1 for all t.

Corollary 4.3. Let H(t) be an arbitrary path in H(r,C) with a ≤ t ≤ b, and
let γ(t) = expH(t). Then

L(γ) ≥
∫ b

a

‖H ′(t)‖2 dt. (4.11)
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Proof. By the chain rule γ′(t) = D exp[H(t)][H ′(t)], so the inequality follows
from the definition of L(γ) and IEMI.

Now if γ(t) is a path connecting A,B ∈ P(r,C), then H(t) = log γ(t) is
a path connecting logA and logB in H(r,C). The shortest path connecting
these two points in the vector space H(r,C) is a straight line, which has length
‖logA− logB‖2. Considering the above corollary we get that

L(γ) ≥ ‖logA− logB‖2 , (4.12)

which yields us the exponential metric increasing property (EMI):

Proposition 4.4 (EMI). For any two points A,B ∈ P(r,C)

d(A,B) ≥ ‖logA− logB‖2 . (4.13)

Definition 4.2 (Geodesic). Let A,B ∈ P(r,C). A path γ connecting A and B
is called a geodesic if L(γ) = d(A,B).

Proposition 4.5. Let A,B ∈ P(r,C) be commuting matrices. Then exp maps
the line segment H(t) = (1− t) logA+ t logB to the geodesic connecting A and
B in P(r,C).

Proof. We have to verify that

γ(t) = exp (H(t)) (4.14)

is the unique shortest path joining A and B in the metric space (P(r,C), d).
Since A,B commutes, we have γ(t) = A1−tBt and γ′(t) = (logB − logA)γ(t).
Then we have

L(γ) =

∫ 1

0

‖logA− logB‖2 dt = ‖logA− logB‖2 . (4.15)

But EMI says that no path can be shorter than this.
For uniqueness suppose γ̃ is another path that joins A and B. Then log ˜γ(t)

is a path in H(r,C) that joins logA and logB. By Corollary 4.3 it has length
‖logA− logB‖2, but in the Euclidean space H(r,C), the unique shortest path,
which is a straight line connecting logA and logB has the same length, which
is a reparametrization of log γ(t).

It is also straightforward, that the arc-length parametrization of γ(t) when
A,B commute is indeed

γ(t) = A1−tBt (4.16)

for 0 ≤ t ≤ 1.

Theorem 4.6. Let A,B ∈ P(r,C). Then there exists a unique geodesic γ(t)
connecting A and B with

γ(t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1, (4.17)
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and γ(t) has arc-length parametrization, i.e.

d(A, γ(t)) = td(A,B). (4.18)

Moreover we have

d(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥
2

. (4.19)

Proof. The matrices I and A−1/2BA−1/2 commute, so the geodesic connecting
I and A−1/2BA−1/2 is arc-length parametrized as

γ0(t) =
(
A−1/2BA−1/2

)t
, 0 ≤ t ≤ 1. (4.20)

We apply the isometry p 7→ A1/2pA1/2 according to Proposition 4.1 to obtain
the path

γ(t) = A1/2
(
A−1/2BA−1/2

)t
A1/2 (4.21)

connecting the points A and B, so it must be the geodesic connecting the points
A and B and also (4.18) follows.

What follows here from the above assertion is that the Riemannian distance
function is given in the form

d(A,B) =
[
Tr
{

log(A−1/2BA−1/2)2
}]1/2

(4.22)

on P(r,C). We may go the other way around and calculate the geodesic equa-
tions corresponding to the metric (4.2). The geodesic equations will have the
form

γ′′ = γ′γ−1γ′, (4.23)

and with given initial data γ(0) = p ∈ P(r,C) and γ′(0) = X ∈ H(r,C), one
gets the solution as

γ(t) = p1/2 exp
(
p−1/2Xp−1/2t

)
p1/2. (4.24)

If we consider the above geodesics for a fixed p and let X take arbitrary values
from the tangent space at p we arrive at the exponential map of this manifold

expp(X) = p1/2 exp
(
p−1/2Xp−1/2

)
p1/2. (4.25)

We will discuss exponential maps of affinely connected manifolds later. The
inverse of the exponential map gives back the logarithm map, which is in this
case

logp(q) = p1/2 log
(
p−1/2qp−1/2

)
p1/2. (4.26)

Since for general Riemannian manifolds the distance function is given by

d(p, q)2 =
〈
logp(q), logp(q)

〉
p

, (4.27)
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we again end up with the same distance function (4.22) corresponding to the
Riemannian metric (4.2).

At this point we must note that the geometric mean (3.17) is the midpoint
of the geodesic line connecting A and B, according to Theorem 4.6. This is
a very important observation, since in such a way the geometric mean has a
corresponding Riemannian metric with respect to it is the midpoint operation.
This is also the case with the arithmetic and harmonic mean as well. The
corresponding Riemannian metric to the arithmetic mean given on P(r,C) is
just the Euclidean metric

〈X,Y 〉p = Tr{XY } (4.28)

for X,Y ∈ H(r,C). This metric is the induced metric of the Frobenius norm
‖·‖2 defined on the vector space of complex squared matrices. The geodesics
of this metric (connecting arbitrary A,B) are the straight lines in the space of
complex squared matrices

γ(t) = (1− t)A+ tB (4.29)

and the midpoint operation is the arithmetic mean.
The harmonic mean is the midpoint operation of the Riemannian metric

given in the form
〈X,Y 〉p = Tr{p−2Xp−2Y }. (4.30)

This metric is isometric to the Euclidean vector space given above, which
corresponds to the arithmetic mean. The isometry is given by the function
f(X) = X−1 over the set P(r,C). Since the metric is isometric to a Euclidean
space it is itself Euclidean.

Let us turn back to the Riemnnian metric (4.2) corresponding to the geo-
metric mean. We have seen that the Riemannian metrics corresponding to the
arithmetic and harmonic mean is Euclidean. What about the metric (4.2) cor-
responding to the geometric mean? We have to investigate further properties
related to this metric to address this question.

Proposition 4.7. If for some A,B ∈ P(r,C), the identity matrix I lies on the
geodesic connecting A and B, then A and B commute and

logB = −1− s
s

logA, (4.31)

where s = d(A, I)/d(A,B).

Proof. From Theorem 4.6 we know that

I = A1/2
(
A−1/2BA−1/2

)s
A1/2, (4.32)

where s = d(A, I)/d(A,B), thus

B = A1/2A−1/sA1/2 = A−(1−s)/s, (4.33)

so A,B commute and (4.31) holds.
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By the above assertion and Proposition 4.5 it follows that exp is isometric
on straight line segments in H(r,C) passing through the 0 matrix. Additionally
EMI tells us that exp is metric non-decreasing, which tells us that the Rie-
mannian manifold P(r,C) with the metric (4.2) is nonpositively curved, refer to
[16].

An equivalent way (in the class of Riemannian manifolds [16]) to formulate
this is showing that the semiparallelogram law holds.

Theorem 4.8. [Semiparallelogram Law] Let A,B ∈ P(r,C) be arbitrary, and
let M = G(A,B) be the midpoint of the geodesic connecting A,B. Then for all
C ∈ P(r,C) we have

d(M,C)2 ≤ d(A,C)2 + d(B,C)2

2
− 1

4
d(A,B)2. (4.34)

Proof. Applying the isometry p 7→ M−1/2pM−1/2 to all matrices involved, we
may assume M = I. Now I is the midpoint of the geodesic connecting A,B so
we have by Proposition 4.7 that logB = − logA and

d(A,B) = ‖logA− logB‖2 . (4.35)

We have the same for M = I and C,

d(M,C) = ‖logM − logC‖2 . (4.36)

Since H(r,C) is a vector space, it is Euclidean with the norm ‖·‖2, hence it
satisfies the parallelogram law

‖logM − logC‖22 =
‖logA− logC‖22 + ‖logB − logC‖22

2
− 1

4
‖logA− logB‖22 .

(4.37)
Since d(M,C) = ‖logM − logC‖2 and d(A,B) = ‖logA− logB‖2, EMI leads
us to the inequality of the assertion.

Now we know enough about the metric (4.2) to turn back to the problem
of extending the geometric mean to several variables. First of all we should be
looking for extension methods which gives back the n-variable arithmetic and
harmonic means, when we try to extend them from their 2-variable formulas.
The first idea is to look for some external characterizations of the n-variable
arithmetic and harmonic means.

4.2 Matrix Means defined as The Center of Mass

Suppose W is a complete Riemannian manifold with metric tensor 〈·, ·〉p and
Riemannian distance function d(·, ·). Then we define the center of mass of
pi ∈W for 1 ≤ i ≤ n as the minimizer of the function

C(x) =

n∑
i=1

d(x, pi)
2. (4.38)
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If a minimizer exists and it is unique we denote it by arg minx∈W C(x). Firstly
we will show the following

Proposition 4.9 (M. Pálfia [60]). In the complete metric space (W,d) a mini-
mizer of C(x) exists and it is unique, if the metric space is nonpositively curved,
i.e. the semiparallelogram law holds (4.34).

Proof. Let γ(t) be an arc-length parametrized geodesic connecting x, y ∈ W .
Then it is not hard to show using the semiparallelogram law that we have for
all 0 ≤ t ≤ 1 and z ∈W that

d(γ(t), z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2. (4.39)

In order to show this first consider the above for dyadic rationals t, i.e. t = c2−j

which are dense in [0, 1], then use a continuity argument to obtain it for general
t.

So using the above inequality we get

C(γ(t)) ≤ (1− t)C(γ(0)) + tC(γ(1))− t(1− t)nd(γ(0), γ(1))2. (4.40)

Now let α := infz C(z) and let zl be a sequence of points with liml→∞ C(zl) = α.
Let zl,k be the midpoint between zl and zk. Then for l, k →∞

α ≤ C(zl,k) ≤ C(zl) + C(zk)

2
− 1

4
nd(zl, zk)2. (4.41)

Consequently, d(zl, zk) → 0, i.e. zl is a Cauchy sequence, by completeness it
has a limit point ẑ. Moreover by continuity of C(x) we have C(ẑ) = infz C(z).

For uniqueness assume C(z0) = C(z1) = infz C(z) = α and z0 6= z1. For
the midpoint z 1

2
between z0, z1 we get a contradiction, since α ≤ C(z 1

2
) <

C(z0)+C(z1)
2 = α.

We can further characterize the center of mass, since we already now that it
exists and is a unique point, by calculating the gradient of C(x). We need a

Definition 4.3. Let W be a Riemannian manifold with metric tensor 〈·, ·〉p.
Then we define the exponential map expp of W at point p ∈ W as a function
mapping from the tangent space at p to the manifold W as follows. Let Xp be
an element of the tangent space at p. Then expp(Xp) is the point γ(1) on the
geodesic emanating from p in the direction of Xp with arc-length parametriza-
tion, i.e. γ(0) = p and γ′(0) = Xp. The inverse of the exponential map expp(Xp)
at p is called the logarithm map and is denoted by logp(q), if we have the above
parametrization for γ(t) and γ(1) = q then logp(q) = Xp.

By the above definition, it is not hard to see that

d(p, q) =
√〈

logp(q), logp(q)
〉
p

=
√〈

logq(p), logq(p)
〉
q
. (4.42)

We will see later that it is possible to define expp for non-Riemannian manifolds
as well, if they are equipped with an affine connection.
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Proposition 4.10. Let W be a Riemannian manifold with metric 〈·, ·〉p and
Riemannian distance function d(·, ·). Then

gradC(x) = −2

n∑
i=1

logx(pi). (4.43)

Proof. Let f be a smooth function on W . Then the gradient gradf(p) of f in
the direction of the vector field X at point p is defined as

〈gradf(p), Xp〉p =
d

dt
f(γ(t))

∣∣∣∣
t=0

, (4.44)

where γ(t) is a smooth curve with γ(0) = p and γ′(0) = Xp.
Since grad is a linear map, it is enough to calculate the gradient of f(x) =

d(a, x)2. Let γ(t) be a smooth curve and let

ca(s, t) = expa (s loga(γ(t))) . (4.45)

We will use ċa to denote differentiation with respect to t and c′a to denote
differentiation with respect to s of ca. Then D

dsc
′
a(s, t) = 0 and c′a(0, t) =

loga(γ(t)), where D
ds denotes covariant differentiation with respect to s. Since

D
dsc
′
a(s, t) = 0 we have

2

〈
D

ds
c′a(s, t), c′a(s, t)

〉
ca(s,t)

= 0. (4.46)

Since covariant differentiation is compatible with the metric by the Fundamental
Theorem of Riemmanian geometry, this is equivalent to

2

〈
D

ds
c′a(s, t), c′a(s, t)

〉
ca(s,t)

=
d

ds
2 〈c′a(s, t), c′a(s, t)〉ca(s,t) = 0, (4.47)

that is ‖c′a(s, t)‖2ca(s,t) is independent of s. We also have that

〈c′a(0, t), c′a(0, t)〉ca(0,t) = 〈loga(γ(t)), loga(γ(t))〉a (4.48)

and by the independence of ‖c′a(s, t)‖2ca(s,t) from s we get that

d(a, γ(t))2 = 〈loga(γ(t)), loga(γ(t))〉a = 〈c′a(0, t), c′a(0, t)〉ca(0,t) =

= 〈c′a(s, t), c′a(s, t)〉ca(s,t) .
(4.49)

Now we calculate

d

dt
d(a, γ(t))2

∣∣∣∣
t=0

=
d

dt
〈c′a(s, t), c′a(s, t)〉ca(s,t)

∣∣∣∣
t=0

=

= 2

〈
D

dt
c′a(s, t), c′a(s, t)

〉
ca(s,t)

∣∣∣∣∣
t=0

=

(4.50)
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now we use the fact that covariant derivatives commute with ordinary partial
derivatives, i.e. D

dt
d
ds = D

ds
d
dt

= 2

〈
D

ds
ċa(s, t), c′a(s, t)

〉
ca(s,t)

∣∣∣∣∣
t=0

. (4.51)

Since d(a, γ(t))2 is independent of s we have that∫ 1

0

d(a, γ(t))2ds = d(a, γ(t))2. (4.52)

Hence

d

dt
d(a, γ(t))2

∣∣∣∣
t=0

=
d

dt

∫ 1

0

d(a, γ(t))2ds

∣∣∣∣
t=0

=

=

∫ 1

0

2

〈
D

ds
ċa(s, t), c′a(s, t)

〉
ca(s,t)

ds

∣∣∣∣∣
t=0

=

=

∫ 1

0

2

〈
D

ds
ċa(s, t), c′a(s, t)

〉
ca(s,t)

+

〈
ċa(s, t),

D

ds
c′a(s, t)︸ ︷︷ ︸
=0

〉
ca(s,t)

ds

∣∣∣∣∣∣∣∣
t=0

=

=

∫ 1

0

2
d

ds
〈ċa(s, t), c′a(s, t)〉ca(s,t) ds

∣∣∣∣
t=0

=

= 2 〈ċa(1, t), c′a(1, t)〉ca(1,t) − 〈ċa(0, t), c′a(0, t)〉ca(0,t)

∣∣∣
t=0

=

= 2 〈ċa(1, 0), c′a(1, 0)〉ca(1,0) − 〈ċa(0, 0), c′a(0, 0)〉ca(0,0) .

(4.53)

Now since ċa(0, 0) = 0, ċa(1, 0) = γ′(0), c′a(0, 0) = loga(γ(0)), c′a(1, 0) =
− logγ(0)(a) and ca(1, 0) = γ(0), we have that

d

dt
d(a, γ(t))2

∣∣∣∣
t=0

= 2
〈
γ′(0),− logγ(0)(a)

〉
γ(0)

. (4.54)

This shows that gradd(a, p)2 = −2 logp(a).

Corollary 4.11. An immediate consequence of the above proposition is that if
arg minx∈W C(x) exists and is unique, it can be found by solving the equation

0 = gradC(x) = −2

n∑
i=1

logx(pi). (4.55)

Let us do this in the case of the arithmetic mean. Consider the convex cone
P(r,C) as a subset of the vector space H(r,C). The norm ‖·‖2 on H(r,C) yields
us the Euclidean metric

dE(A,B) =
√
Tr {(A−B)2} (4.56)
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on the vector space H(r,C). The restriction of this metric to P(r,C) is also
Euclidean and we have already mentioned that the 2-variable arithmetic mean
is the geodesic midpoint operation on this space.

Corollary 4.12. The n-variable arithmetic mean
∑n
i=1 Ai
n is the center of mass

of the points A1, . . . , An ∈ P(r,C) with respect to the Euclidean metric (4.56).

Proof. Proposition 4.9 tells us that the center of mass exists and is unique since
the metric (4.56) is Euclidean, therefore the semiparallelogram law holds with
equality (parallelogram law) mentioned earlier. By Corollary 4.11 we need to
solve the equation

− 2

n∑
i=1

(X −Ai) = 0 (4.57)

for X ∈ P(r,C), since in this case logp(q) = q−p. The solution is the n-variable
arithmetic mean.

Proposition 4.13 (M. Pálfia [64]). Let d(X,Y ) be defined as

d(X,Y ) = dE(f(X), f(Y )), (4.58)

where f : P(r,C) 7→ P(r,C) is a diffeomorphism. Then the unique minimizer X̂
of the function

C(X) =

n∑
i=1

d(X,Xi)
2 (4.59)

is given as

X̂ = f−1

(∑n
i=1 f(Xi)

n

)
. (4.60)

Proof. Since the corresponding metric d(·, ·) is a pullback of the Euclidean met-
ric over the space of squared complex matrices it is also Euclidean. Using the
isometric embedding f , the object function of the minimization problem is of
the form

n∑
i=1

d(X,Xi)
2 =

n∑
i=1

dE (f(X), f(Xi))
2

. (4.61)

But since by the previous corollary the Riemannian center of mass of the set
S = {f(X1), . . . , f(Xn)} in the Euclidean space of squared complex matrices is
the arithmetic mean of the points {f(X1), . . . , f(Xn)}, therefore

A =

∑n
i=1 f(Xi)

n
(4.62)

minimizes the functional
∑n
i=1 dE (X, f(Xi))

2
, so X̂ = f−1(A) minimizes∑n

i=1 dE (f(X), f(Xi))
2
.
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If we choose f(X) = X−1 in the above proposition, we get that the n-variable
harmonic mean is also characterized as the center of mass on a Riemannian
manifold.

Now since the geometric mean G(A,B) has also a corresponding Riemannian
metric (4.2) where it is the center of mass of the two points A,B, we may
define the n-variable geometric mean as the center of mass similarly to the
arithmetic mean, since by Theorem 4.8 the metric space is nonpositively curved
and Proposition 4.9 ensures the existence and uniqueness of the center of mass
[47]. Since the logarithm map has the form (4.26) the center of mass of the points
X1 . . . , Xn ∈ P(r,C) with repsect to the metric (4.2) is the unique solution
X ∈ P(r,C) of the equation

0 =
n∑
i=1

logXi(X) =

n∑
i=1

log
(
X
−1/2
i XX

−1/2
i

)
. (4.63)

This is a nonlinear matrix equation and it has not yet been solved analytically
so far, however if we consider it for mutually commuting Xi, we can easily solve
it analytically and the solution is

X =

n∏
i=1

X
1/n
i , (4.64)

which is the usual geometric mean of positive numbers. The invariance un-
der the permutations of the Xi of the center of mass is trivial, while operator
monotonicity in its variables was an open question for several years, it has been
solved very recently in [39] using the Riemannian structure (4.2) and its non-
positive curvature combined with a characteirization of the center of mass using
probability theory.

4.3 Symmetrization Procedures and Weighted Means

Many researchers were focusing on the extension of the 2-variable geometric
mean to several variables, since it has the corresponding Riemannian structure
(4.2). This Riemannian metric space structure gives a very strong tool to extend
the geometric mean. We have already seen the analogy to the arithmetic and
harmonic means via the center of mass characterization. This idea essentially
appeared first in [47]. We mention a few other constructions very soon. But
before that we spend a few words on 2-variable weighted means. First of all it
must be noted that Kubo-Ando theory characterizes matrix means and gives
lower and upper bounds on possible symmetric means, however it tells nothing
further about how to ”weight” a symmetric mean. In the case of the arihtmetic,
harmonic and geometric means, this is more or less straightforward, we can
use the geodesic lines of the Riemannian structure to define 2-variable weighted
means. In this case for t ∈ [0, 1] the weighted arithmetic mean is given as

At(A,B) = (1− t)A+ tB, (4.65)
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while the weighted harmonic mean is given as

Ht(A,B) =
[
(1− t)A−1 + tB−1

]−1
. (4.66)

Using the Riemannian structure the weighted geometric mean is

Gt(A,B) = A1/2
(
A−1/2BA−1/2

)t
A1/2. (4.67)

We can see again the importance of the Riemannian structures corresponding
to symmetric matrix means, since it provides us with weighted matrix means
corresponding to symmetric ones as geodesic lines. Now we turn to other mean
extension procedures. Consider the following procedure called the Ando-Li-
Mathias procedure [5].

Definition 4.4. [ALM iteration] Let X = (X0
1 , . . . , X

0
n) where X0

i ∈ P(r,C)
and define the mapping M(X1, . . . , Xn) inductively as follows. If n = 2 assume
that M(X1, X2) is already given. For general n > 2 assume that M(X1, . . . ,
Xn−1) is already defined. Then using M(X1, . . . , Xn−1), set up the iteration

X l+1
i = M

(
Z 6=i

(
X l

1, . . . , X
l
n

))
, (4.68)

where Z 6=i(X
l
1, . . . , X

l
n) = X l

1, . . . , X
l
i−1, X

l
i+1, . . . , X

l
n. If the sequences X l

i con-
verge to a common limit point for every i, then define

lim
l→∞

X l
i = M(X0

1 , . . . , X
0
n). (4.69)

Theorem 4.14 (Theorem 3.2 [5]). The limit in Definition 4.4 starting with
M(A,B) := G(A,B), M(X1, . . . , Xn) exists for all n, in other words the se-
quences converge to a common limit point for all n.

The above proof relies heavily on the Riemannian structure (4.2). In [38] it
was proved by Lawson and Lim that the above procedure converges in nonpos-
itively curved metric spaces, using the midpoint operation of the space as the
2-variable mean to extend from. The convergence in Theorem 4.14 was shown
to be linear. Temesi and Petz in [68] showed that the ALM procedure converges
for orderable tuples of matrices, however the general case still remained open.
Since the procedure recursively relies on itself, it is quite ineffective even for
small n. Hence in [15] the following similar procedure was defined. Both of the
above and the following procedures are referred to, in general, as symmetrization
procedures.

Definition 4.5. [BMP iteration] Let X = (X0
1 , . . . , X

0
n) where X0

i ∈ P(r,C)
and define the mapping M(X1, . . . , Xn) inductively as follows. If n = 2 assume
thatMt(X1, X2) is already given. For general n > 2 assume thatM(X1, . . . , Xn−1)
is already defined. Then using M(X1, . . . , Xn−1), set up the iteration

X l+1
i = Mn−1

n

(
X l
i ,M

(
Z 6=i

(
X l

1, . . . , X
l
n

)))
, (4.70)
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where Z 6=i(X
l
1, . . . , X

l
n) = X l

1, . . . , X
l
i−1, X

l
i+1, . . . , X

l
n. If the sequences X l

i con-
verge to a common limit point for every i, then define

lim
l→∞

X l
i = M(X0

1 , . . . , X
0
n). (4.71)

Theorem 4.15 (Theorem 3.1 [15]). The limit in Definition 4.5 starting with
M(A,B) := G(A,B), M(X1, . . . , Xn) exists for all n, in other words the se-
quences converge to a common limit point for all n.

The most important property of this procedure is essentially summarized in

Theorem 4.16 (Theorem 3.2 [15]). The procedure in Definition 4.5 considered
for the geometric mean converges cubically.

The proofs of the above theorems were also relying on the metric structure
(4.2). The important properties of the ALM- and BMP-procedures considered
for the geometric mean are that their limit points fulfill the properties listed in
Definition 4.1 and also some additional properties which are intuitively expected
from a geometric mean [5, 15].

One of the major drawbacks, from the computational point of view of both
symmetrization procedures, is their recursivity. Namely in order to be able to
compute an n-mean we have to provide the (n-1)-variable version which is itself
defined as a limit point of the same iteration. Therefore even if n = 4 we run into
serious computational difficulties, since it is very hard to find the limit point of
either symmetrization procedures in closed form of their initial variables (to be
more precise this has not even been achieved yet). The author in [63] defined a
procedure which is similar to the above two, but relies directly on the 2-variable
form of means. In the next chapter we will discuss this procedure in a metric
geometric setting and then later for every matrix mean.

5 Means in Complete k-convex Metric Spaces

We have already seen that the geometric mean is the midpoint operation on a
Riemannian manifold of nonpositive curvature (4.2). This manifold is a com-
plete metric space and we have already mentioned that in [38] Lawson and Lim
considered the ALM-process in complete metric spaces of nonpositive curvature,
which is a generalization of the geometric mean to metric geometric setting.

We will define our procedure in a more general metric setting, namely we
will define our mean on complete metric spaces with a certain positive upper
curvature bound. In other words, our procedure will not only work in non-
positively curved complete metric spaces, but also in positively curved metric
spaces. These spaces will be called k-convex metric spaces.

5.1 k-convexity of Metric Spaces

Let (X, d) be a metric space. Let I ⊂ (R), then the length L(γ) of a curve
γ : I → X is defined as the supremum of

∑n
i=1 d (γ(ti−1), γ(ti)) where t0 ≤
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t1 ≤ · · · ≤ tn and t0, . . . , tn ∈ I. A curve γ : I → X is called a geodesic if and
only if d (γ(s), γ(t)) = d (γ(s), γ(r)) + d (γ(r), γ(t)) for all s < r < t ∈ I. The
metric space X is called a geodesic length space or geodesic metric space if any
two points x, y can be connected with a geodesic γ such that L(γ) = d(x, y).
We denote the open ball by B(x, r) with circumcenter x and radius r and with
B̄(x, r) its closed counterpart.

The following definition of k-convexity is due to Ohta in [53]. We will estab-
lish our results for spaces with such properties below.

Definition 5.1. Let k ∈ (0, 2].

• An open set U in a geodesic metric space (X, d) is called a Ck-domain if
for any three points x, y, z, any geodesic γ : [0, 1] 7→ X between x, y and
for all t ∈ [0, 1] we have

d(z, γ(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − k

2
t(1− t)d(x, y)2. (5.1)

• A geodesic metric space (X, d) is k-convex if it is itself a Ck − domain.

• A geodesic metric space (X, d) is locally k-convex if every point in X is
contained in a Ck-domain.

If the inequality (5.1) holds for t = 1/2 then it holds for all t ∈ [0, 1]. A
k-convex metric space becomes a CAT (0) space if the above inequality holds
for k = 2. In this case the space is said to have nonpositive curvature in the
sense of Alexandrov, in other words the semiparallelogram law holds.

We begin with recalling and investigating properties of k-convex spaces.

Lemma 5.1 (Lemma 2.2 in [53]). If an open ball B(x, r) ⊂ X is a Ck-domain
then for any two points in B(x, r) a geodesic is unique between them. In par-
ticular any two points in a k-convex metric space are connected by a unique
geodesic.

Proof. Fix two points y, z ∈ B(x, r) and let α(t), β(t) : [0, 1] 7→ X be two
geodesics between y and z. For each t ∈ (0, 1) take a minimal geodesic γ :
[0, 1] 7→ X from α(t) to β(t). It then follows from the k-convexity that

d(y, γ(1/2))2 ≤ 1

2
d(y, α(t))2 +

1

2
d(y, β(t))2 − k

8
d(α(t), β(t))2

= t2d(y, z)2 − k

8
d(α(t), β(t))2

(5.2)

and similarly

d(z, γ(1/2))2 ≤ (1− t)2d(y, z)2 − k

8
d(α(t), β(t))2. (5.3)

Therefore we have by using the triangle inequality that

d(y, z) ≤
√
t2d(y, z)2 − k

8
d(α(t), β(t))2

+

√
(1− t)2d(y, z)2 − k

8
d(α(t), β(t))2,

(5.4)
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i.e., α(t) = β(t).

We will also say that a geodesic metric space is uniquely geodesic if any two
points can be connected by a unique distance minimizing geodesic. According
to the above lemma we have unique geodesics between two points, therefore we
also have unique metric midpoints as well, which will be the midpoints of these
geodesics.

The existence of minimal balls containing a bounded subset in a Ck-domain
is guaranteed by (5.1). The proof follows the case when k = 2.

Lemma 5.2 (M. Pálfia [60]). Let S be a bounded subset of a complete k-convex
metric space X. Then there exists a unique closed ball with minimal radius r
containing S.

Proof. We use a similar technique as the one in Proposition 5.10 in [6]. Let
r(x, S) = supy∈S d(x, y) for x ∈ X and r(S) = infx∈X r(x, S). For all x, y ∈ X
we have

r(m,S)2 ≤ r(x, S)2 + r(y, S)2

2
− k

8
d(x, y)2, (5.5)

where m = γ(1/2) is the unique midpoint between x and y. From the above it
is easy to conclude the following inequalities

d(x, y)2 ≤ 4

k

[
r(x, S)2 + r(y, S)2

]
− 8

k
r(m,S)2

≤ 4

k

[
r(x, S)2 + r(y, S)2

]
− 8

k
r(S)2.

(5.6)

From the above the uniqueness of the circumcenter of the metric ball is obvious,
since if we had two circumcenters c1, c2 ∈ X then from the above inequality
we get d(c1, c2) = 0. We also have that a sequence xn with r(xn, S) → r(S) is
Cauchy since by the inequalities above

d(xm, xn)2 ≤ 4

k

[
r(xm, S)2 + r(xn, S)2

]
− 8

k
r(S)2. (5.7)

Hence by completeness xn has a limit point x, which is the circumcenter of the
ball with minimal radius. So we have S ⊂ B̄(x, r(S)).

It also follows that any metric ball in a Ck-domain is also a geodesically
convex set.

Lemma 5.3 (M. Pálfia [60]). Let B(x, r) ⊂ D where D is a Ck-domain. Then
B(x, r) is a geodesically convex set which means that every geodesic which con-
nects two points in B(x, r) is also a subset of B(x, r).

Proof. Let y, z ∈ B(x, r) so we have d(x, y) ≤ r and d(x, z) ≤ r. Let γ : [0, 1] 7→
D be a geodesic (which is unique according to Lemma 5.1) such that γ(0) = y
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and γ(1) = z. Now for arbitrary t ∈ [0, 1]

d(x, γ(t))2 ≤ (1− t)d(x, y)2 + td(x, z)2 − k

2
t(1− t)d(y, z)2

≤ (1− t)d(x, y)2 + td(x, z)2

≤ (1− t)r2 + tr2

≤ r2,

(5.8)

so we have d(x, γ(t)) ≤ r. This means that γ(t) ⊂ B(x, r) so B(x, r) is geodesi-
cally convex.

An important consequence of the above lemmas is the existence of a geodesic
convex hull of a bounded set.

Definition 5.2 (Geodesic convex hull). The geodesic convex hull GCH(S) is
the intersection of all convex sets containing S.

We may construct this set in the following way:

Proposition 5.4 (Proposition 2.5.5 in [66]). GCH(S) can be obtained as
GCH(S) =

⋃
n≥0 Fn, where F0 = S and for n ≥ 1 the set Fn consists of all

points which lie on geodesics with starting and ending points in Fn−1.

Proof. The union
⋃
n≥0 Fn is an increasing union. Using the fact that the

convex hull GCH(S) is a geodesically convex set, it is easy to see by induction
that for each n ≥ 0, the set Fn is contained in GCH(S). Thus, we have⋃
n≥0 Fn ⊂ GCH(S). Conversely if x, y ∈

⋃
n≥0 Fn, then they belong to a set Fn

for some n ≥ 0. So the geodesic connecting x, y is contained in Fn+1, therefore in⋃
n≥0 Fn. Thus, the set

⋃
n≥0 Fn is geodesically convex and therefore it contains

GCH(S), i.e. GCH(S) =
⋃
n≥0 Fn.

What follows from Lemma 5.3 is that the geodesic convex hull of a bounded
set is contained in a convex metric ball.

We will base the results in the next section on the above properties of k-
convex metric spaces.

5.2 The Iterative Mean

In this section we will provide an extension of midpoint maps as means between
two points on a k-convex metric space to several variables. This new mean
is called the Iterative mean. Important properties of this mean will also be
investigated here.

We will use the following notation to denote the unique midpoint between
two points in a uniquely geodesic metric space as

a]b = γa,b(1/2). (5.9)
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Definition 5.3 (Iterative process, M. Pálfia [60]). Let Q0
1, . . . , Q

0
n be points in

a uniquely geodesic metric space X and π = {π0, π1, . . .} be an infinite sequence
of permutations, where each πi is a permutation of the letters {1, . . . , n}. With
respect to the infinite sequence of permutations π let

Ql+1
i =

{
Qlπl(i)]Q

l
πl(i+1) if 1 ≤ i < n,

Qlπl(n)]Q
l
πl(1) else.

(5.10)

The above procedure yields a sequence of n-tuple of points.

Theorem 5.5 (Iterative mean, M. Pálfia [60]). Let (X, d) be a complete k-
convex geodesic metric space. Let Q0

1, . . . , Q
0
n be points in the metric space X.

Let us set up the iteration in Definition 5.3 on these points in X with respect to
an infinite sequence of permutations π = {π0, π1, . . .}. Then the sequences Qli
converge to a common limit point.

Proof. We begin showing that the distances d(Qli, Q
l
j) are converging to zero,

after that we will show that the Qli sequences are themselves convergent. For
the sake of simplicity of notations from now on we define πl(n+ 1) := πl(1).

Let us consider one iteration step in Definition 5.3. From the k-convexity of
X for every Q1

i and for arbitrary x ∈ X we have

d
(
x,Q1

i

)2 ≤ d
(
x,Q0

π0(i)

)2

+ d
(
x,Q0

π0(i+1)

)2

2
− k

8
d
(
Q0
π0(i), Q

0
π0(i+1)

)2

,

(5.11)
where Q1

i = Q0
π0(i)]Q

0
π0(i+1). If we consider the sum of these equations above

for every i we arrive at

n∑
i=1

d
(
x,Q1

i

)2 ≤ n∑
i=1

d
(
x,Q0

i

)2 − k

8

n∑
i=1

d
(
Q0
π0(i), Q

0
π0(i+1)

)2

, (5.12)

as can be seen in Figure 3. Applying this to every iteration step we get

n∑
i=1

d
(
x,Ql+1

i

)2
︸ ︷︷ ︸

al+1(x)

≤
n∑
i=1

d
(
x,Qli

)2
︸ ︷︷ ︸

al(x)

−k
8

n∑
i=1

d
(
Qlπl(i), Q

l
πl(i+1)

)2

︸ ︷︷ ︸
el

. (5.13)

Note that the above is valid for every possible infinite sequence of permutations
π.

Now the sequence al(x) ≥ 0 measures the sum of the squared distances from
an arbitrary point x and the points of the n-tuple in the lth iteration step. By
(5.13) we have

al+1(x) ≤ al(x)− (k/8)el for all x ∈ X. (5.14)

In other words the sequence al(x) indexed by l is monotone decreasing, since
el ≥ 0, and it is also bounded from below by 0 and above too by the initial
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Figure 3: One iteration step in the Theorem 5.5 in a k-convex metric space.

finite value a0(x), therefore it is convergent. From the convergence of al(x) and
by (5.14) it is easy to see that el → 0. This means that the points Qli are
approaching one another.

Let us consider the geodesic convex hull of the starting n points. This
geodesic convex hull exists and is bounded because it is a subset of a convex
metric ball according to Lemma 5.3. Set Al = GCH

({
Ql1, . . . , Q

l
n

})
. By

the definition and construction of the convex hull in Proposition 5.4 we have
Al ⊇ Al+1. We will show that the limit set A = liml→∞Al =

⋂
Al is of

diameter zero, therefore a singleton according to Cantor’s intersection theorem
[72] (Theorem C of Ch. 2.12).

Firstly we will show that for arbitrary points x, y in the geodesic convex hull
Al we have

d (x, y)
2 ≤ max

1≤p,q≤n
d
(
Qlp, Q

l
q

)2
. (5.15)

The geodesic convex hull Al itself can be obtained by the method given in
Proposition 5.4. Hence it is enough to show that for any two geodesics α(t) and
β(s) parametrized by arc-length with ending points in the set Fj we have

d (α(t), β(s))
2 ≤ max

1≤p,q≤n
d
(
Qlp, Q

l
q

)2
. (5.16)

One way to obtain this with the notations α(0) = a, α(1) = b, β(0) = c, β(1) = d,

44



is the following

d (α(t), β(s))
2 ≤ (1− t)d (a, β(s))

2
+ td (b, β(s))

2 − t(1− t)k
2
d (a, b)

2

d (a, β(s))
2 ≤ (1− s)d (a, c)

2
+ sd (a, d)

2 − s(1− s)k
2
d (c, d)

2

d (b, β(s))
2 ≤ (1− s)d (b, c)

2
+ sd (b, d)

2 − s(1− s)k
2
d (c, d)

2
.

(5.17)

Substituting into the first inequality above one arrives at the following

d (α(t), β(s))
2 ≤(1− t)(1− s)d (a, c)

2
+ (1− t)sd (a, d)

2

+ t(1− s)d (b, c)
2

+ tsd (b, d)
2

− t(1− t)k
2
d (a, b)

2 − s(1− s)k
2
d (c, d)

2

≤max
{
d(a, c)2, d(a, d)2, d(b, c)2, d(b, d)2

}
.

(5.18)

Applying the above inequality recursively in every step of the construction of
the convex hull in Proposition 5.4 one derives (5.16).

Now using the triangle inequality one automatically obtains the bound

n∑
i=1

d
(
Qlπl(i), Q

l
πl(i+1)

)
≥ 2 max

1≤p,q≤n
d
(
Qlp, Q

l
q

)
. (5.19)

Now as el → 0 we have d
(
Qlπl(i), Q

l
πl(i+1)

)
→ 0, so one obtains easily

lim
l→∞

max
1≤p,q≤n

d
(
Qlp, Q

l
q

)
= 0. (5.20)

Thus also diam(Al) → 0 so by Cantor’s intersection theorem the limit A is a
singleton, which by completeness implies that any sequence of points xl ∈ Al
converges to this singleton A, so also every Qli converges to this singleton as
well.

The above theorem ensures the convergence of the sequences Qli, but it does
not tell anything about the asymptotic rate of convergence to the common limit
point. The next theorem ensures that the convergence rate is at least linear.

Theorem 5.6 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q0

1, . . . , Q
0
n be points in the metric space X. Let us set up

the iteration in Definition 5.3 on these points in X. Let R denote the common
limit point of these sequences. Then

al+1(R)

al(R)
≤ 1− k

2n2
, (5.21)

so the points Qli are converging to R linearly.
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Proof. We will give a lower bound on el/al(R) and use (5.14) to provide an
upper bound on al+1(R)/al(R).

Again by the triangle inequality one automatically obtains a lower bound on
el as

n∑
i=1

d
(
Qlπl(i), Q

l
πl(i+1)

)
≥ 2 max

1≤p,q≤n
d
(
Qlp, Q

l
q

)
. (5.22)

Using the Cauchy-Schwarz inequality and the fact that all the above terms are
positive one gets

n∑
i=1

d
(
Qlπl(i), Q

l
πl(i+1)

)
≤
√
n

√√√√ n∑
i=1

d
(
Qlπl(i), Q

l
πl(i+1)

)2

=
√
n
√
el. (5.23)

Hence we obtain the lower bound

4

n
max

1≤p,q≤n
d
(
Qlp, Q

l
q

)2 ≤ el. (5.24)

According to the preceding proof, for arbitrary points x, y in the geodesic
convex hull Al = GCH

({
Ql1, . . . , Q

l
n

})
we have

d (x, y)
2 ≤ max

1≤p,q≤n
d
(
Qlp, Q

l
q

)2
. (5.25)

Now from (5.24) and (5.16) we get

el
al(R)

≥ 4

n2
, (5.26)

which together with (5.14) prove the theorem.

If we consider the proof of the above theorem and (5.14), it is easy to see
that for different permutations πl between iteration steps in Theorem 5.5 we
may get slower and faster rates of convergence. One way to speed up the rate
of convergence to the common limit point R - which itself may depend on the
chosen sequence of permutations π in Theorem 5.5 - is to maximize the error
term el by which al(R) at least decreases.

Taking into account the above mentioned, we can modify our iterational
scheme with adding some heuristics, making it adaptive to the geometry of the
sets given by the points in every iterational step. The function Idealmapping
defined by Algorithm 1 by the author in [63] returns the array ma which contains
the indices of points Ql1, . . . , Q

l
n in such an order, that if we set up one iterational

step as letting πl(i) = ma(i), we can sufficiently reduce the distance between
them.

For numerical results consult Figure 4, where we used the Riemannian man-
ifold P(r,C) with (4.2) as the complete k-convex metric space. Iteration 1 was
performed using the same permutation π0 for all iterations steps, i.e. πl = π0 for
all l ≥ 0. At the same time Iteration 3 used the heuristic function Idealmapping
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in every iteration step. We have measured the distance from the the ”solution”,
which itself was calculated by letting Iteration 3 converge to under a certain
treshold. We have also calulated the center of mass of the starting points by us-
ing two procedures to approximate it, a gradient method and a newton method,
refer to [46].

Algorithm 1 Idealmapping

Require: x1, . . . , xn
1: d⇐ n(n− 1)/2
2: i⇐ 1, j ⇐ 2
3: for k = 0 to d do
4: r[k, 1]⇐ d(xi, xj)
5: r[k, 2]⇐ i, r[k, 3]⇐ j
6: if j = n then
7: j ⇐ n− i+ 2, i⇐ 1
8: else
9: i⇐ i+ 1, j ⇐ j + 1

10: end if
11: end for
12: sort r by r[k, 1] descending
13: ma[1]⇐ r[1, 2]
14: j ⇐ r[1, 3]
15: for k = 2 to n do
16: find largest r[i, 1] for such i that (r[i, 2] = j or r[i, 2] = j) and r[i, 2] /∈ ma

and r[i, 3] /∈ ma
17: if r[i, 2] = j then
18: j ⇐ r[i, 3], ma[k]⇐ r[i, 2]
19: else
20: j ⇐ r[i, 2], ma[k]⇐ r[i, 3]
21: end if
22: end for
23: return ma

It is also crucial to point out that the common limit point R appears to
depend on the infinite sequence of permutations π as numerical experiments
suggest. So therefore one might prefer to use the notation Rπ to express the
dependence on the sequence of permutations π.

A major improvement of the Iterative mean over the ALM- and BMP-mean is
that it relies only on the 2-variable form of means, so this procedure is feasible
even for large number of variables. Also it is proved here that it has linear
convergence rate, like the ALM-process. We will see later that it also satisfies
almost all of the properties which are required from a matrix mean, except
permutation invariance. We will discuss these features in later sections, when
we consider this process for all possible matrix means.

In the next section we will use the extension method given in this section to
approximate the center of mass of the points Q0

1, . . . , Q
0
n.
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Figure 4: Convergence rate results for 10, 5× 5 matrices.

5.3 Center of mass and k-convexity

Before one can study the center of mass of points in a metric space, it must be
made sure that it is a unique point and it exists. If the metric space is complete
and it has nonpositive curvature then this point exists and is unique as we have
seen it before in Proposition 4.9.

The first steps will be to show the uniqueness of the center of mass in k-
convex metric spaces.

Theorem 5.7 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q1, . . . , Qn be points in the metric space X. Then the center
of mass

arg min
x∈X

n∑
i=1

d (x,Qi)
2

(5.27)

exists and is a unique point in the space X where arg min
x∈X

C(x) denotes the

unique point that minimizes a function C(x).

Proof. The proof of this is essentially the same as the proof of Proposition 4.9.

Using (5.14) we can control the distance of an arbitrary point x ∈ X and
the limit point Rπ of the procedure in the following

Theorem 5.8 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q1, . . . , Qn be points in the metric space X. Then for arbitrary
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x ∈ X and for the limit point Rπ of the procedure in Theorem 5.5 set up on the
points Q1, . . . , Qn we have the following inequality

d(Rπ, x) ≤

√∑n
i=1 d (x,Qi)

2 − k
8

∑∞
l=1 el

n
. (5.28)

Proof. From (5.14) for all x ∈ X we have

k

8
el ≤ al(x)− al+1(x). (5.29)

Taking a finite sum of the above equations one arrives at the following

Sm =
k

8

m∑
l=1

el ≤ a1(x)− am+1(x). (5.30)

We can take the limit of the sums Sm as it is a monotone increasing sequence
bounded from above, so we conclude that

lim
m→∞

am(x) ≤ a1(x)− k

8

∞∑
l=1

el, (5.31)

but limm→∞ am(x) is nothing but nd(x,Rπ)2. This yields

d(x,Rπ) ≤

√∑n
i=1 d (x,Qi)

2 − k
8

∑∞
l=0 el

n
for all x. (5.32)

Now since the center of mass is unique in complete k-convex metric spaces,
one can consider the following corollary of the above result.

Corollary 5.9 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q1, . . . , Qn be points in the metric space X. Then the center
of mass

Y = arg min
x∈X

n∑
i=1

d (x,Qi)
2

(5.33)

and the limit point Rπ of the procedure in Theorem 5.5 set up on the points
Q1, . . . , Qn fulfill the following inequality

d(Rπ, Y ) ≤

√∑n
i=1 d (Y,Qi)

2 − k
8

∑∞
l=1 el

n
. (5.34)

It is interesting to consider the fact that if X is a Euclidean space then it
has zero curvature which turns (5.1) with k = 2 into an equality which is the
parallelogram law of the Euclidean space

d(z, γx,y(1/2))2 =
d(z, x)2 + d(z, y)2

2
− 1

4
d(x, y)2. (5.35)
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So in this case (5.14) turns into an equality as well

al+1(x) = al(x)− 1

4
el for all x ∈ X. (5.36)

One may minimize both sides with respect to x and conclude

arg min
x∈X

al+1(x) = arg min
x∈X

al(x). (5.37)

Here we used the basic fact that the error term el is independent of x so therefore
it acts as a constant term with respect to the above minimization.

Therefore we have just proved the following

Proposition 5.10 (M. Pálfia [60]). If X is a Euclidean space then the limit
point Rπ of the procedure in Theorem 5.5 is the center of mass of the starting
points for every possible infinite sequence of permutations π.

Following the path of the above proposition one can conclude that in certain
special situations even more is true.

Proposition 5.11 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q1, . . . , Qn be points in the metric space X that lie on a single
geodesic segment. Then the limit point Rπ of the procedure in Theorem 5.5 set
up on the points Q1, . . . , Qn is the center of mass of the points Q1, . . . , Qn.

Proof. A single geodesic segment equipped with the distance function inherited
from the space X is a Euclidean space, therefore it is just the case of Proposition
5.10.

It is worth noting that one must be aware of the fact that the limit point Rπ
of the procedure depend on the chosen infinite sequence π. If (5.1) turns into
an equality, as in the case of a single geodesic segment or Euclidean space, then
the possibly different limit points depending on π of the procedure will collapse
onto one unique point, the center of mass.

Bhatia and Holbrook studied the question in [13] that whether the ALM-
mean is the same as the center of mass. It turned out by numerical simulations
that they are generally slightly different. In this context we can say a bit more
about this. Since the manifold P(r,C) has nonpositive curvature (Theorem 4.8),
it is automatically k-convex for k = 2, therefore we may use all the above
machinery presented above. Now the ALM-mean is the same as the one given
by Theorem 5.5 for n = 3 variables. By Theorem 5.11 we know that the above
two points are the same as long as the starting points lie on a single geodesic
segment. In the other cases we have an upper bound on their distance according
to Corollary 5.9. It seems so that the difference of the two points may be due to
nonzero curvature. Theorem 5.5 gives an extended geometric mean for several
matrices which is the same as the one defined by Jung-Lee-Yamazaki in [32] for
one particular infinite sequence of permutations π.

This is also the case for the special orthogonal group which is also an actively
studied manifold in terms of averaging. The references are [46], [48]. SO(n)
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is locally k-convex which is the consequence of the following two important
propositions in [53].

Proposition 5.12 (Ohta). A CAT (1)-space (X, d) with diamX ≤ π/2− ε, ε ∈
(0, π/2) is k-convex for k = (π − 2ε) sin ε/ cos ε.

Proposition 5.13 (Ohta). An Alexandrov space with a local upper curvature
bound is locally k-convex for any k ∈ (0, 2).

For these kind of spaces we may also use the machinery presented here in
the previous sections since they are themselves Ck-domains or they have subsets
small enough to be Ck-domains. Therefore the above claims for the case of the
geometric mean can be carried out also for these spaces. In these spaces we can
define means of several points as an extension of the midpoint maps in the spaces
as the limit point of the procedure in Theorem 5.5. The above two propositions
due to Ohta tells us how to translate the requirement of k-convexity to the
language of curvature. As we can see, an upper curvature bound suffices.

Interestingly enough in the case of the arithmetic and harmonic means, the
ALM-mean, the BMP-mean and the Iterative mean are all the same. This
follows from Corollary 4.12 which tells us that the n-variable arihtmetic mean is
the center of mass on P(r,C) with its inherited Euclidean metric, while similarly
by Proposition 4.13 with diffeomorphism f(X) = X−1, we have that the n-
variable harmonic mean is the center of mass as well on the manifold P(r,C)
diffeomorphic to itself by f(X). Furthermore Proposition 5.10 tells us that
since these spaces are Euclidean, our Iterative procedure gives back the center
of mass. Actually Proposition 5.10 does not prove this explicitly for the ALM-
and BMP-process, but using the same ideas, similar proofs can be carried out for
these two procedures as well. While this argument work for these means which
are related to Euclidean spaces, it does not work in the case of the geometric
mean. Even more it seems so that if the metric space is not Euclidean, then all
these means are different.

6 Symmetric Matrix Means as Metric Midpoints

The kind reader probably noticed how important are these metric structures
corresponding to matrix means. Especially in the case of the geometric mean,
where the corresponding space is non-Euclidean, therefore the above discussed
extension problems are far from being trivial. The original program of the
author was to show that each symmetric matrix mean is a midpoint operation
on a complete metric space, thus all the matrix mean extension problems are
treatable through the above metric geometric framework. However it turned
out that this program was too ambitious, there are actually very few symmetric
matrix means which are midpoint operations on Riemannian manifolds. Even
there are very few if we just want the corresponding manifolds to be affinely
connected, but not necessarily metrizable.

In this section we will answer these questions. We will classify all possible
affinely connected manifolds which have a midpoint operation that happens
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to be a symmetric matrix mean. This classification will also show us which
symmetric matrix means have a corresponding weighted mean that is also a
geodesic in some affinely connected manifold. We will begin with some general
geometrical constructions, which will be applied later in the case of symmetric
matrix means. With the help of these tools we exhibit some symmetries of
the possible affine connections that can occur, which ultimately lead to their
classification. In fact it turns out here at the end that all symmetric matrix
means which are midpoint operations on P(r,C) have its corresponding affine
connection of the form

∇XpYp = DY [p][Xp]−
κ

2

(
Xpp

−1Yp + Ypp
−1Xp

)
, (6.1)

where 0 ≤ κ ≤ 2 and the tangent space is H(r,C), the space of hermitian matri-
ces, at every point p ∈ P(r,C). This result is summarized in Theorem 6.14 in the
end of this section. During the classification process we will exhaustively study
the properties of these possible connections, namely their parallel transports,
metrizability, symmetricity, etc.

6.1 Affinely Connected Manifolds and the Exponential
Map

Let W be a smooth manifold. The tangent bundle TW is the disjoint union of
all the tangent spaces TpW at point p, i.e.

TW =
⋃
p∈W
{p} × TpW . (6.2)

Definition 6.1. [Affine Connection] An affine connection (or Koszul connec-
tion) ∇ on a smooth manifold W is a mapping

C∞(W,TW )× C∞(W,TW ) 7→ C∞(W,TW )

(X,Y ) 7→ ∇XY
(6.3)

of smooth vector fields X,Y ∈ C∞(W,TW ), which satisfies the following prop-
erties:

1. ∇fXY = f∇XY , that is, ∇ is C∞(W,R)-linear in the first variable.

2. ∇X(fY ) = df [X] + f∇XY , that is, it satisfies the Leibniz-rule in the
second variable.

3. ∇X(Y1 + Y2) = ∇XY1 +∇XY2, that is, linearity in the second variable.

The geodesics of an affine connection can also be defined as smooth curves
γ(t) satisfying

∇γ′(t)γ′(t) = 0. (6.4)

In this case the exponential map expp(Xp) is defined to be

expp(Xpt) = γ(t), (6.5)
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where γ′(0) = Xp. Similarly to the Riemannian case, the logarithm map logp(q)
is defined as the inverse of expp(Xp).

We also define the parallel transport vector field X(t) of a given vector
Xγ(0) ∈ Tγ(0)W along a smooth curve γ(t) as the solution of the ODE

∇γ′(t)X(t) = 0. (6.6)

A Riemannian structure automatically leads to a distinguished affine connection,
the Levi-Civita connection. The only connection which is compatible with the
metric 〈·, ·〉p, according to the Fundamental Theorem of Riemannian geometry
[27, 25]. The above definitions are given in the modern, index-less notation. We
may state them fixing a coordinate frame using indices. In particular to an affine
connection ∇, in the fixed coordinate frame ei = ∂

∂xi , we have corresponding
Christoffel-symbols Γijk given as

∇ejek = Γijkei. (6.7)

This gives the equivalence between the index-less and the classical notation. If
we have a Riemannian metric gij , that is, a given positive definite tensor at
every tangent space, smoothly varying over the manifold W , the corresponding
metric compatible Levi-Civita connection is determined by the assumption that

∇elgik = 0. (6.8)

From this we obtain the Christoffel-symbols in the form

Γijk =
1

2
gim

(
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

)
, (6.9)

where gik denotes the inverse of gik. It follows that the Levi-Civita connection
is a symmetric connection (torsion-free), i.e. Γijk = Γikj .

The covariant derivative of a vector field XmEm is given as

∇elXm =
∂Xm

∂xl
+ ΓmklX

k. (6.10)

Similarly we define the covariant derivative of tensors as

∇elAik =
∂Aik

∂xl
+ ΓimlA

mk + ΓkmlA
im. (6.11)

For covariant tensors we have a negative sign before each Γijk and the indices
are lowered accordingly.

In the remaining of this section we reconstruct the exponential map of an
arbitrary affinely connected differentiable manifold based on its midpoint map.
Without loss of generality we fix a base point p as the starting point of the
geodesics. The basics of the exponential map of a manifold can be found for
example in Chapter I. paragraph 6 [27].
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Theorem 6.1 (M. Pálfia [56]). Let M be an affinely connected smooth mani-
fold diffeomorphically embedded into a vector space V . Suppose that the midpoint
map m(p, q) = expp(1/2 logp(q)) is known in every normal neighborhood where
the exponential map expp(X) is a diffeomorphism. Then in these normal neigh-
borhoods the inverse of the exponential map logp(q) can be fully reconstructed
from the midpoint map in the form

logp(q) = lim
n→∞

m(p, q)◦n − p
1

2n

, (6.12)

where we use the notation m(p, q)◦n ≡ m
(
p,m(p, q)◦(n−1)

)
.

Proof. We will use some basic properties of the differential of the exponential
map to construct the inverse of it, the logarithm map. Since in small enough
normal neighborhoods the exponential map is a diffeomorphism, it can be given
as the inverse of the logarithm map logp(q).

By the basic properties of the exponential map we have

∂ expp(Xt)

∂t

∣∣∣∣
t=0

= lim
t→0

expp(Xt)− p
t

= X, (6.13)

where X ∈ TpM . Here we used the fact that we have an embedding into a
vector space. Suppose expp(X) = q is in the normal neighborhood. We are
going to provide the limit on the right hand side of the above equation. The
limit clearly exists in the normal neighborhood so

lim
t→0

expp(Xt)− p
t

= lim
n→∞

expp
(
X 1

2n

)
− p

1
2n

= lim
n→∞

m(p, q)◦n − p
1

2n

. (6.14)

Here we use the notation m(p, q)◦n ≡ m
(
p,m(p, q)◦(n−1)

)
. We are in a normal

neighborhood so the exponential map has an inverse, the logarithm map, so the
limit may be written as

X = lim
t→0

expp(Xt)− p
t

= lim
n→∞

m(p, q)◦n − p
1

2n

= logp(q). (6.15)

In the above assertion we used the midpoint map to reconstruct the expo-
nential map, but we can use any map that yields a point, other then the ending
points, on the geodesic connecting two points in the normal neighborhood. This
is summarized in the following

Proposition 6.2 (M. Pálfia [56]). Let M be an affinely connected smooth man-
ifold diffeomorphically embedded into a vector space V . In every normal neigh-
borhood N let γa,b(t) denote the geodesic connecting a, b ∈ N with parametriza-
tion γa,b(0) = a and γa,b(1) = b. Suppose that the map m(a, b)t0 = γa,b(t0) =
expp(t0 logp(q)) is known for a t0 ∈ (0, 1) in every normal neighborhood N where
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the exponential map is a diffeomorphism and a, b ∈ N . Then in these normal
neighborhoods the logarithm map can be fully reconstructed as

logp(q) = lim
n→∞

m(p, q)◦nt0 − p
tn0

, (6.16)

with the notation m(p, q)◦nt0 ≡ m
(
p,m(p, q)

◦(n−1)
t0

)
t0

. We also obtain the expo-

nential map by inverting logp(q).

We are going to use this construction in the next sections to characterize
matrix means which occur as midpoint maps on affinely connected manifolds.

6.2 Geometric Constructions Applied to Matrix Means

As we already know since Section 3, that an important consequence of Kubo-
Ando theory is that every matrix mean can be written in the form

M(A,B) = A1/2f
(
A−1/2BA−1/2

)
A1/2, (6.17)

where f(t) is a normalized operator monotone function. For symmetric means,
we have f(t) = tf(1/t) which implies that f ′(1) = 1/2. Recall from Section 2
the integral characterization that an operator monotone function f(t), which is
defined over the interval (0,∞), possesses:

f(t) = α+ βt+

∫ ∞
0

(
λ

λ2 + 1
− 1

λ+ t

)
dµ(λ), (6.18)

where α is a real number, β ≥ 0 and µ is a positive measure on (0,∞) such that∫ ∞
0

1

λ2 + 1
dµ(λ) <∞. (6.19)

We will use this integral characterization at several points in order to show that
certain functions are analytic.

We are interested in finding all possible symmetric matrix means which are
also geodesic midpoint operations on smooth manifolds. We will call such a
matrix mean affine [64]:

Definition 6.2 (Affine matrix mean, M. Pálfia [56]). An affine matrix mean
M : W 2 7→W is a symmetric matrix mean which is at the same time a geodesic
midpoint operation M(A,B) = expA(1/2 logA(B)) on a smooth manifold W ⊇
P(n,C) equipped with an affine connection, where B is assumed to be in the
injectivity radius of the exponential map expA(x) of the connection given at the
point A. The mapping logA(x) is just the inverse of the exponential map at the
point A ∈W .

The following assertion will show that if a matrix mean is affine then the
exponential map of the corresponding smooth manifold has a special structure.
We will use similarly the notation M(A,B)◦n = M

(
A,M(A,B)◦(n−1)

)
as be-

fore.
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Theorem 6.3 (M. Pálfia [56]). Let M(A,B) be a symmetric matrix mean.
Then

lim
n→∞

M(A,B)◦n −A
1

2n

= A1/2 logI

(
A−1/2BA−1/2

)
A1/2 (6.20)

where the limit exists and is uniform for all A,B ∈ P(n,C) and logI(t) is an
operator monotone function on the interval (0,∞).

Proof. We will prove the convergence to a continuous function logI(t) in a more
general setting. The operator monotonicity in the matrix mean case will be a
particularization.

First of all note that by the repeated usage of (6.17) we can reduce the above
problem to the right hand side of the following formula:

M(A,B)◦n −A
1

2n

= A1/2 f
(
A−1/2BA−1/2

)◦n − I
1

2n

A1/2. (6.21)

From now on we will explicitly use the notation g(t)◦n = g
(
g(t)◦(n−1)

)
for

arbitrary function g(t) where this notation is straightforward.
Due to the above formula it is enough to prove the assertion for a single op-

erator monotone function f(t). If the corresponding matrix mean is symmetric
then we have f(t) = tf(1/t) which implies that the derivative of the operator
monotone function f(t) is 1/2 at the identity, so f ′(1) = 1/2. Actually this is
just the special case of this problem considered for arbitrary concave, analytic
functions f(t) given in the following form

lim
n→∞

f(X)◦n − I
f ′(1)n

, (6.22)

for X ∈ P(n,C). As every operator monotone function which maps (0,∞) to
(0,∞), is analytic on (0,∞) and has an analytic continuation on the complex
half-plane, we can consider the functional calculus for hermitian matrices in the
above equations. Therefore we can further reduce the problem to the set of
the positive reals by diagonalizing X and considering the convergence for every
distinct diagonal element separately.

Without loss of generality we may shift the function f(t) by 1 so it is enough
to show the assertion for

lim
n→∞

g(t)◦n

g′(0)n
, (6.23)

where g(t) = f(t+ 1)− 1 and so g(t)◦n = f(t+ 1)◦n − 1. From now on we will
be considering the shifted problem for the sake of simplicity. At this point we
must emphasize the fact that the function g(t) must have 0 as an attractive and
only fixed point on the interval of interest (−1,∞). In the unshifted case this
is equivalent to f(t) having 1 as the only attractive fixed point on the interval
(0,∞), which is the case by Banach’s fixed point theorem for normalized opera-
tor monotone functions f(t) with f ′(1) = 1/2 (operator monotone functions are
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also concave, so f ′′(t) ≤ 0). We can also assume that 0 < g′(0) < 1. The rest of
the argument will be based on the claim that the above limit of analytic func-
tions of the form g(t)◦n/g′(0)n is uniform Cauchy therefore the limit function
exists and is continuous.

First of all we have 0 as the attractive and only fixed point of g(t), so for
arbitrary x ∈ (−1,∞) the sequence xn = g(x)◦n converges to 0. We have
g(0) = 0 and by the mean value theorem we have

xn = g(x)◦n = g′(tn)g(x)◦(n−1) =

n∏
i=1

g′(ti)x, (6.24)

where ti ∈
[
0, g(x)◦(i−1)

]
if x ≥ 0 or ti ∈

[
g(x)◦(i−1), 0

]
if x < 0, since g(t) is a

concave function on (−1,∞). As xn → 0 for arbitrary x we have g′(ti)→ g′(0).
Now we have to obtain a suitable upper bound on∣∣∣∣g(x)◦n

g′(0)n
− g(x)◦m

g′(0)m

∣∣∣∣ . (6.25)

We argue as follows∣∣∣∣g(x)◦n

g′(0)n
− g(x)◦m

g′(0)m

∣∣∣∣ =
|g(x)◦n − g′(0)n−mg(x)◦m|

g′(0)n
≤

≤
∣∣∏n

i=m+1 g
′(ti)− g′(0)n−m

∣∣ |∏m
i=1 g

′(ti)|
g′(0)n

|x| =

=

∣∣∣∣∣
n∏

i=m+1

g′(ti)

g′(0)
− 1

∣∣∣∣∣
∣∣∣∣∣
m∏
i=1

g′(ti)

g′(0)

∣∣∣∣∣ |x|.
(6.26)

Now uniform convergence follows if |
∏∞
i=1 g

′(ti)/g
′(0)| < ∞ because then the

tail
∏∞
i=m+1 g

′(ti)/g
′(0)→ 1 so (6.25) can be arbitrarily small on any compact

interval in (−1,∞) by choosing a uniform m. By the continuity of g′(t) and
xn → 0 we have g′(ti) → g′(0) and by assumption 0 < g′(0) < 1, therefore
there exists N and q such that for all i > N we have 0 < g′(ti) ≤ q < 1. What
follows here is that ∃K1,K2 < ∞ such that |tN | ≤ K1 and |g′′(ti)| ≤ K2 for
all i > N . This yields the bound |ti| ≤ K1q

i−N for all i > N . Considering the
Taylor expansion of g′(t) around 0 we get

g′(ti)

g′(0)
=
g′(0) + g′′(t′i)ti

g′(0)
(6.27)

for 0 < t′i < ti. What follows from this is that∣∣∣∣∣
∞∏
i=N

g′(ti)

g′(0)

∣∣∣∣∣ ≤
∞∏
i=N

(
1 +

K1K2

g′(0)
qi−N

)
. (6.28)

The infinite product on the right hand side converges because
∑∞
j=0

K1K2

g′(0) q
j

converges hence |
∏∞
i=1 g

′(ti)/g
′(0)| <∞ for all x in the compact interval.
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At this point we can easily establish the convergence for normalized operator
monotone functions because they are concave functions by Theorem 2.4, so
f ′′(t) ≤ 0 and they have only one fixed point which is 1. The fact that the limit
is operator monotone in this case follows from the operator monotonicity of the
generating f(t).

Actually the above proof works for a larger class of functions then the family
of normalized operator monotone functions. The limit in (6.22) exists and it is
a continuous function if the twicely differentiable function f(t) has 1 as the only
attractive fixed point and the derivative −1 < f ′(t) < 1.

Proposition 6.4 (M. Pálfia [56]). The limit function logI(t) in Theorem 6.3
maps P(n,C) to H(n,C) injectively and

I −X−1 ≤ logI(X) ≤ X − I (6.29)

for all X ∈ P(n,C) with respect to the positive definite order of matrices.

Proof. By Theorem 2.12 we know that an operator monotone function has non-
negative derivative, also by Theorem 2.4 we have that its second derivative is
nonpositive. Now suppose that logI(t) has zero derivative at some point t0 in
its domain. Then by the preceeding two observations, for all t ≥ t0, logI(t)
must be constant. Since this function is analytic on (0,∞) and it has an ana-
lytic continuation by virtue of Corollary 2.26 to the upper half plane. So if it
is constant for all t ≥ t0, then its power series consist of a constant term. The
function, since it is analytic on (0,∞), equals to its power series on the domain
of its analyticity, so it should be constant on the whole (0,∞) interval.

Now we will show that this cannot happen. Suppose we have two normal-
ized operator monotone functions f(t) and g(t) corresponding to two symmetric
matrix means and f(X) ≤ g(X) for all X ∈ P(n,C). Then it is easy to see that
logI,f (X) ≤ logI,g(X) for the two logI(t) corresponding to f(t) and g(t) respec-
tively in Theorem 6.3. By Theorem 3.4 we know that the smallest symmetric
matrix mean is the harmonic mean, while the largest is the arithmetic mean, in
other words (

A−1 +B−1

2

)−1

≤M(A,B) ≤ A+B

2
(6.30)

for all symmetric matrix means M(A,B) and arbitrary A,B ∈ P(n,C). This
inequality is equivalent to(

I +X−1

2

)−1

≤ f(X) ≤ I +X

2
(6.31)

at the level of the representing normalized operator monotone functions. Now
the harmonic and the arithmetic means are affine means, in particular they
correspond to Euclidean manifolds. The logarithm map is logI(X) = X −
I in the case of the arithmetic mean, while logI(X) = I − X−1 in the case
of the harmonic mean, by using Theorem 6.1 and 6.3 and the corresponding
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Euclidean metric structures. Now again we have logI,f (X) ≤ logI,g(X) for
two corresponding normalized operator monotone functions f(t) and g(t). This
combined with inequality (6.31) yield (6.29). Now it remains an easy exercise
to see that logI(X) cannot be constant on (0,∞), since then it would violate
inequality (6.29).

These observations yield that logI(t) is injective, since it is nonconstant
operator monotone, and it follows from the functional calculus that it maps
P(n,C) to H(n,C).

Since logI(t) is operator monotone on (0,∞), it is also analytic there, so
it has an analytic inverse expI(t) by Lagrange’s Inversion Theorem, since its
derivative is nonzero due to Theorem 6.4. It is also easy to see that log′I(1) = 1,
so exp′I(0) = 1 and since logI(1) = 0 we have expI(0) = 1. This follows from
the fact that

log′I(t) = lim
n→∞

∏n−1
i=0 f

′ (f(t)◦i
)

1
2n

, (6.32)

since logI(t) is a uniform limit of analytic functions, therefore its differential is

the limit of the differential of the functions f(t)◦n−1
1/2n , which are also uniformly

converging due to a similar argument to the one given in the proof of Theo-
rem 6.3 and f ′(1) = 1/2 by the symmetricity of the matrix mean. By these
considerations we have just arrived at the following

Proposition 6.5 (M. Pálfia [56]). If a symmetric matrix mean M(A,B) is an
affine mean, then the exponential map and its inverse, the logarithm map are of
the following forms

expp(X) = p1/2 expI

(
p−1/2Xp−1/2

)
p1/2

logp(X) = p1/2 logI

(
p−1/2Xp−1/2

)
p1/2

(6.33)

for p ∈ P(n,C), where expI(X) and logI(X) are analytic functions such that
expI : H(n,C) 7→ P(n,C) and logI(X) is its inverse and log′I(I) = I, exp′I(0) =
I, logI(I) = 0, expI(0) = I.

Note that by Weierstrass’s approximation theorem we also have

p1/2 expI

(
p−1/2Xp−1/2

)
p1/2 = p expI

(
p−1X

)
p1/2 logI

(
p−1/2Xp−1/2

)
p1/2 = p logI

(
p−1X

)
.

(6.34)

In some cases, to ensure easier reading, similarly as in the above formulas, we
will denote matrices with uppercase letters which are elements of some tangent
space, while at the same time we will use lowercase letters for denoting matrices
which are points of a differentiable manifold.
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6.3 Constructions of Invariant Affine Connections

Let us recall the Riemannian manifold with given metric (4.2). This is actually
the symmetric space GL(n,C)/U(n,C), where U(n,C) denotes the group of
unitary transformations. We did not cover the theory of symmetric spaces, but
we shall not need it, so the symmetricity of this space is just mentioned as a
fact, although it is a very important one from a certain point of view [16]. We
will turn back to this later. What we do need is that the Levi-Civita connection
corresponding to this Riemannian manifold is

∇XpYp = DY [p][Xp]−
1

2

(
Xpp

−1Yp + Ypp
−1Xp

)
, (6.35)

here DY [p][Xp] denotes the Fréchet-differential of Y at the point p in the di-
rection Xp. One important property fulfilled by symmetric spaces is that their
connection is invariant under their parallel transport. So the above connection
is also an invariant one.

The question that can be asked at this point is that are there other sym-
metric matrix means which correspond to symmetric spaces as midpoint maps
on P(n,C)? Two other examples are known, these are the arithmetic mean and
the harmonic mean. The symmetric spaces corresponding to these two means
are Euclidean while the symmetric space corresponding to the geometric mean
has nonpositive curvature. It has flat and negatively curved de Rham factors.

At this point we begin with the characterization of means that correspond
to affine symmetric spaces in general. What we know at this point is that the
two functions, which are of each others inverse, logI(t) and expI(t) exist for
all symmetric matrix means, as it was proved in Theorem 6.3. The calculation
of the limit (6.22) might be complicated. We give examples where the limit
function may be calculated relatively easily.

Example 6.1. Consider the one-parameter family of means

X1/2

(
I +

(
X−1/2Y X−1/2

)q
2

)1/q

X1/2. (6.36)

These functions are actually matrix means if and only if q ∈ [−1, 1] as we
will see later, but nonetheless we can consider the case now when q is an
arbitrary nonzero real number. The corresponding generating functions are
fq(t) = q

√
(1 + xq)/2. We have

fq(x)◦3 =

1 +
1+ 1+xq

2

2

2

1/q

(6.37)

Examining the continued fraction that occurs here, it is easy to justify the
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following

lim
n→∞

fq(x)◦n − 1

f ′(1)n
= lim
n→∞

(
xq

2n + 1
2 + 1

22 + · · ·+ 1
2n

)1/q − 1
1

2n

=

= lim
n→∞

(
xq

2n + 1− 1
2n

)1/q − 1
1

2n

= lim
t→0

(txq − t+ 1)1/q − 1

t
=

=
∂(txq − t+ 1)1/q

∂t

∣∣∣∣
t=0

=
xq − 1

q
.

(6.38)

In [25] and [27] there is an extensive study of affine connections on man-
ifolds. A well known fact is that the affine connection on a manifold can be
reconstructed by differentiating the parallel transport in the following way

∇XpYp = lim
t→0

Γ0
t (γ)Yγ(t) − Yγ(0)

t
, (6.39)

where γ(t) denotes an arbitrary smooth curve emanating from p in the direction
Xp = ∂γ(t)/∂t|t=0 and Γst (γ)Y denotes the parallel transport of the vector field
Y along the curve γ from γ(t) to γ(s), refer to [25, 27]. The above limit does
not depend on the curve itself, only on its initial direction vector and it depends
on the vector field Y in an open neighborhood of p. On affine symmetric spaces
the parallel transport from one point to another is given by the differential of
the geodesic symmetries with a negative sign. The geodesic symmetry is given
as

Sp(q) = expp(− logp(q)). (6.40)

On affine symmetric spaces this map is an affine transformation so one can
conclude that

Γ0
1(γ)Y = −

∂Sγ(1/2)(expq(Y t))

∂t

∣∣∣∣
t=0

, (6.41)

where γ(t) is a geodesic connecting p = γ(0) and q = γ(1).
We have already proved the following formulas for the exponential and log-

arithm map at the end of the preceding section

expp(X) = p1/2 expI

(
p−1/2Xp−1/2

)
p1/2 = p expI

(
p−1X

)
logp(X) = p1/2 logI

(
p−1/2Xp−1/2

)
p1/2 = p logI

(
p−1X

)
.

(6.42)

The above identities already specify the geodesic symmetries with the notation
SI(X) = expI(− logI(X)) as

Sp(q) = expp(− logp(q)) = p1/2SI

(
p−1/2qp−1/2

)
p1/2 = pSI

(
p−1q

)
. (6.43)

Now we are in position to prove the following
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Theorem 6.6 (M. Pálfia [56]). Let P(n,C) be subset of an affine symmetric
space with affine geodesic symmetries given as (6.43). Then the invariant affine
connection has the form

∇XpYp = DY [p][Xp]−
κ

2

(
Xpp

−1Yp + Ypp
−1Xp

)
, (6.44)

where κ = S′′I (1)/2.

Proof. We are going to use (6.41) to obtain the connection (6.44). We make the
assumption that the geodesic symmetries are of the form (6.43). The functions
expp(X) and logp(X) are of the form (6.42), where expI(t) and logI(t) are
analytic functions on a disk centered around 0 and 1 respectively. We also have
that logI(1) = 0, expI(0) = 1 and furthermore

∂ expI(t)

∂t

∣∣∣∣
t=0

= 1. (6.45)

First of all we have to differentiate the map Sp(q) given in (6.43) to obtain
Γ0

1(γ)Y = Tq→pY , where γ(t) is a geodesic connecting p = γ(0) and q = γ(1).

∂Sp(expq(Y t))

∂t

∣∣∣∣
t=0

=
∂pSI(p

−1 expq(Y t))

∂t

∣∣∣∣∣
t=0

=

= pDSI
[
p−1q

] [
p−1Y

] (6.46)

We used the fact that ∂ expq(Y t)/∂t|t=0 = Y which is a consequence of exp′I(0) =
1.

Now we are going to differentiate the parallel transport as given by (6.41) to
get back the connection. We use the holomorphic functional calculus to express
the Fréchet-differential in (6.46) as

DSI [X][U ] =
1

2πi

∫
g

SI(z)[zI −X]−1U [zI −X]−1dz. (6.47)

It also easy to see that DSI [I][I] = S′I(1) = −1, so we may express the limit
(6.41) by the following differential

∇γ′(0)Yγ(0) = −
∂γ(t/2)DSI

[
γ(t/2)−1γ(t)

] [
γ(t/2)−1Yγ(t)

]
∂t

∣∣∣∣∣
t=0

= (6.48)
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we massage this further by using the holomorphic functional calculus

= − ∂

∂t
γ(t/2)

1

2πi

∫
g

SI(z)[zI − γ(t/2)−1γ(t)]−1γ(t/2)−1Yγ(t)

[zI − γ(t/2)−1γ(t)]−1dz
∣∣
t=0

= −1

2
γ′(0)γ(0)−1Yγ(0)DSI [I][I]−

− γ(0)
1

2πi

∫
g

SI(z)

{
[zI − I]−1 1

2
γ(0)−1γ′(0)[zI − I]−1γ(0)−1Yγ(0)[zI − I]−1 +

+ [zI − I]−1γ(0)−1Yγ(0)[zI − I]−1 1

2
γ(0)−1γ′(0)[zI − I]−1+

+ [zI − I]−1

[
−γ(0)−1 1

2
γ′(0)γ(0)−1Yγ(0) + γ(0)−1DY [γ(0)][γ′(0)]

]
[zI − I]−1

}
dz =

(6.49)

by using the fact that DSI [I][I] and [zI − I]−1 commutes with every matrix we
get

= −DSI [I][I]

2
γ′(0)γ(0)−1Yγ(0)−

− γ(0)
1

2πi

∫
g

SI(z)dz

(z − 1)3

1

2
γ(0)−1γ′(0)γ(0)−1Yγ(0)−

− γ(0)
1

2πi

∫
g

SI(z)dz

(z − 1)3

1

2
γ(0)−1Yγ(0)γ

′(0)γ(0)−1−

− γ(0)
1

2πi

∫
g

SI(z)dz

(z − 1)2

[
−1

2
γ(0)−1γ′(0)γ(0)−1Yγ(0) + γ(0)−1DY [γ(0)][γ′(0)]

]
(6.50)

at this point we are going to use the integral representation

S
(j)
I (1) =

j!

2πi

∫
g

SI(z)

(z − 1)j+1
dz

to further simplify the above.

∇γ′(0)Yγ(0) = −S
′′
I (1)

4

[
γ′(0)γ(0)−1Yγ(0) + Yγ(0)γ(0)−1γ′(0)

]
−

− S′I(1)

2
γ′(0)γ(0)−1Yγ(0) −

S′I(1)

2

[
−γ′(0)γ(0)−1Yγ(0) + 2DY [γ(0)][γ′(0)]

]
=

= −S′I(1)DY [γ(0)][γ′(0)]− S′′I (1)

4

[
γ′(0)γ(0)−1Yγ(0) + Yγ(0)γ(0)−1γ′(0)

]
.

(6.51)

So we have that κ = S′′I (1)/2.
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The above clearly tells us that all symmetric spaces occurring in such a way
that their midpoint operation is a matrix mean, have invariant affine connections
in the form (6.44). We are going to study these connections as κ being a
parameter. We will find out in the next section for which values of κ are these
spaces symmetric. Also for arbitrary real κ (6.44) defines an affine connection
with corresponding exponential and logarithm map which are of the form (6.42).
This fact follows from considering the geodesic equations for the curves γ1(t) =
expI

(
p−1/2Xp−1/2t

)
and γ2(t) = expp(Xt) = p1/2 expI

(
p−1/2Xp−1/2t

)
p1/2.

We will also determine if these connections are metric or not.

6.4 Properties of These Affine Connections

Our next step is to integrate the geodesic equations corresponding to the one
parameter family of connections (6.44).

Theorem 6.7 (M. Pálfia [56]). The geodesic equation corresponding to the
affine connection (6.44) is

γ̈ = κγ̇γ−1γ̇. (6.52)

The solution of this equation is the following one parameter family of functions

expI(X) =

{
[(1− κ)X + 1]

1
1−κ if κ 6= 1,

exp(X) else.
(6.53)

Proof. First of all note that by (6.42) it is enough to solve the equation (6.52)
for real numbers. Therefore the equation takes the form

exp′′I (t) = κ exp′I(t)
2 expI(t)

−1. (6.54)

If we transform the equation to the inverse function of expI(t) which will be the
logarithm map logI(t), then we get a separable first order differential equation
of the form

log′′I (t) = −κ log′I(t)t
−1. (6.55)

Solving the above we get the logarithm map as

logI(X) =

{
X1−κ−1

1−κ if κ 6= 1,

log(X) else.
(6.56)

From this by inverting the above function we get the assertion.

Since we have integrated the geodesic equations we can get back the means
which induce these affinely connected manifolds using (6.42)

M(X,Y ) = expX

(
1

2
logX(Y )

)
=

=

X
1/2

[
I+(X−1/2Y X−1/2)

1−κ

2

] 1
1−κ

X1/2 if κ 6= 1,

X1/2
(
X−1/2Y X−1/2

)1/2
X1/2 else.

(6.57)
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The above functions are matrix means if κ ∈ [0, 2], see exercise 4.5.11 [11].
For other values of κ the corresponding functions fail to be operator monotone,
however they still may be considered as means from a geometrical point of view.

If κ = 0 we get back the arithmetic mean as the midpoint operation, and
the weighted arithmetic mean

At(A,B) = (1− t)A+ tB (6.58)

is the geodesic line connecting A and B with respect to the metric 〈X,Y 〉p =
Tr {X∗Y }. If κ = 2 we get back the harmonic mean as the midpoint operation,
and the weighted harmonic mean

Ht(A,B) =
(
(1− t)A−1 + tB−1

)−1
(6.59)

is also a geodesic with respect to the metric 〈X,Y 〉p = Tr
{
p−2Xp−2Y

}
. We

have already mentioned that the second metric is isometric to the first one, so
it is also Euclidean.

In the case when κ = 1 the midpoint is the geometric mean and the geodesics
are given by the weighted geometric mean

Gt(A,B) = A1/2
(
A−1/2BA−1/2

)t
A1/2. (6.60)

The corresponding Riemannian metric is 〈X,Y 〉p = Tr
{
p−1Xp−1Y

}
. This

manifold, which is the symmetric space GL(n,C)/U(n,C), satisfies the semi-
parallelogram law (see Section 4.1), so is nonpositively curved while the other
two has zero curvature.

So we already know that in the case of arithmetic, geometric and harmonic
mean (κ = 0, 1, 2 respectively) we have a corresponding Riemannian metric.
These metrics are of fundamental importance in the theory of matrix means
as we have seen so far. Since all of the manifolds of this one-parameter family
are analytic, we can omit the study of holonomy groups and study the problem
directly using power series expansions as in [21]. It is also easy to see that these
connections are symmetric and torsion free so all of them can possibly be a
Levi-Civita connection of a Riemannian manifold.

Let W be an analytic manifold with a symmetric affine connection. Let
Rijkl denote its Riemann curvature tensor with respect to a coordinate frame.
Then W admits a Riemannian metric gij if and only if every solution gij of the
following system of equations

gslR
s
ikl + gisR

s
jkl = 0 (6.61)

also satisfies the system of equations

gslR
s
ikl;m + gisR

s
jkl;m = 0, (6.62)

here we use the Einstein summation convention for repeated indices and the
semicolon ; to denote the covariant differentiation with repsect to the index
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which follows the semicolon. The above theorem can be found in [75] as Theorem
1.3. Similarly one may also consult the classical paper [21].

In our case it turns out that

ΓijkEi =− κ

2
(Ejp

−1Ek + Ekp
−1Ej)

RijklEi =

(
κ

2
− κ2

4

)(
Ejp

−1Ekp
−1El + Elp

−1Ekp
−1Ej−

−Ejp−1Elp
−1Ek − Ekp−1Elp

−1Ej
)

,

(6.63)

where the Ei form the standard basis of the vector space of hermitian matrices.
In order to determine which of these manifolds are symmetric spaces it is suffi-
cient to calculate the covariant differential Rsjkl;m, since it vanishes everywhere
if and only if the underlying manifold is a symmetric space. So we have by
definition

Rijkl;mEi =
∂Rijkl
∂xm

Ei + ΓinmR
n
jklEi−

− ΓnjmR
i
nklEi − ΓnkmR

i
jnlEi − ΓnlmR

i
jkmEi.

(6.64)

After some calculations one gets the following formulas

∂Rijkl
∂xm

Ei =

=

(
κ

2
− κ2

4

)(
−Ejp−1Emp

−1Ekp
−1El − Ejp−1Ekp

−1Emp
−1El+

+ Ejp
−1Emp

−1Elp
−1Ek + Ejp

−1Elp
−1Emp

−1Ek−
− Elp−1Emp

−1Ekp
−1Ej − Elp−1Ekp

−1Emp
−1Ej+

+Ekp
−1Emp

−1Elp
−1Ej + Ekp

−1Elp
−1Emp

−1Ej
)

ΓinmR
n
jklEi =

=− κ

2

(
κ

2
− κ2

4

)(
Ejp

−1Ekp
−1Elp

−1Em − Ejp−1Elp
−1Ekp

−1Em+

+ Elp
−1Ekp

−1Ejp
−1Em − Ekp−1Elp

−1Ejp
−1Em+

+ Emp
−1Ejp

−1Ekp
−1El − Emp−1Ejp

−1Elp
−1Ek+

+Emp
−1Elp

−1Ekp
−1Ej − Emp−1Ekp

−1Elp
−1Ej

)
.

(6.65)

It is possible to check using the above that Rsjkl;m = 0 everywhere if and only
if κ = 0, 1, 2. This proves the following

Proposition 6.8 (M. Pálfia [56]). The only symmetric matrix means which are
affine means corresponding to symmetric spaces are the arithmetic, harmonic
and geometric means.

Now we turn to the metrization problem. First of all we compute the parallel
transport map over a geodesic connecting an arbitrary point and the identity.
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Proposition 6.9 (M. Pálfia [56]). Let c(t) be a geodesic with respect to the
connection (6.44) and c(0) = I, c(1) = p. Then the unique solution of ∇ċ(t)Y =
0 with respect to the connection (6.44) and the initial condition Yc(0) = Y0 is
the vector field

Y (t) = c(t)
κ
2 Y0c(t)

κ
2 . (6.66)

Proof. We have to integrate the equation ∇c′(t)Yc(t) = 0. This is equivalent to

DY [c(t)][c′(t)]− κ

2

(
c′(t)c(t)−1Yc(t) + Yc(t)c(t)

−1c′(t)
)

= 0. (6.67)

We will be looking for the solution Yc(t) = Y (t) in the form

Y (t) = f(c(t))Y0f(c(t)), (6.68)

for some analytic function f(x). We have for the Fréchet-differential

DY [c(t)][c′(t)] =
dY (t)

dt
=
df(c(t))

dt
Y0f(c(t)) + f(c(t))Y0

df(c(t))

dt
. (6.69)

Now substituting into the equation of the parallel transport above, we get

df(c(t))

dt
Y0f(c(t)) + f(c(t))Y0

df(c(t))

dt
=
κ

2

(
c′(t)c(t)−1Yc(t) + Yc(t)c(t)

−1c′(t)
)

.

(6.70)
Since c(t) = expI(t logI(p)), it has a power series expansion, as has f(x), so we
have by commutativity that

κ

2
c′(t)c(t)−1f(c(t)) =

df(c(t))

dt
= Df [c(t)][c′(t)] = f ′(c)c′(t). (6.71)

Since everything on the left and right hand side commutes with each other, we
arrive at the following separable differential equation

κ

2
c−1 = f ′(c)f(c)−1, (6.72)

which has its solution in the form f(c) = cκ/2.

By the above proposition we should have the Riemannian metric in the form〈
p−κ/2Xp−κ/2, p−κ/2Y p−κ/2

〉
(6.73)

for some positive definite bilinear form 〈·, ·〉 given on the tangent space at I.
Due to the properties of Rijkl we conclude that a trivial solution of (6.61) is the

mapping Tr {XY } at I, since Rijkl is the same for all κ except for a constant
multiple and for κ = 1 we have the connection of GL(n,C)/U(n,C), for which
we have the solution Tr {XY } at I. But it is easy to see that Tr {XY } is not
a solution of (6.62) at I if κ 6= 0, 1, 2. Similarly Tr

{
p−1Xp−1Y

}
is a solution

of (6.61) at arbitrary p for κ 6= 0, 2, but it is not a solution of (6.62) if κ 6= 1.
So we conclude
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Proposition 6.10 (M. Pálfia [56]). The smooth manifolds with affine connec-
tion (6.44) do not carry a Riemannian metric unless κ = 0, 1, 2.

So remarkably we have not found any previously unknown matrix mean so
far which is the midpoint map on a Riemannian manifold, although we have
already found a previously unknown, generally non-metrizable, one parameter
family of affinely connected manifolds where the midpoint operations are sym-
metric matrix means. Due to the above one would expect that these Riemannian
manifolds are sparse. Actually in the next section we show that this one param-
eter family of connections is exhaustive, there exists no other affinely connected
manifold where the midpoint map is a symmetric matrix mean.

6.5 Classification of Affine Matrix Means

Due to Proposition 6.5 we have the exponential and logarithm map in the form

expp(X) = p1/2 expI

(
p−1/2Xp−1/2

)
p1/2

logp(X) = p1/2 logI

(
p−1/2Xp−1/2

)
p1/2

(6.74)

for p ∈ P(n,C), where expI(X) and logI(X) are analytic functions. The function
expI : H(n,C) 7→ P(n,C) and logI(X) is its inverse, log′I(I) = I, exp′I(0) =
I, logI(I) = 0, expI(0) = I. Suppose that (6.74) represent the exponential and
logarithm map of an affinely connected manifold. Then the analytic function
expI(t) is the solution of some geodesic equations

exp′′I (t) + Γ (exp′I(t), exp′I(t), expI(t)) = 0, (6.75)

where Γ(·, ·, ·) : H(n,C) × H(n,C) × P(n,C) 7→ H(n,C) is a smooth function
in all variables and linear in the first two. By Propostion 15 and Corollary 16
of Chapter 6 in [73] we know that connections which have the same torsion
and geodesics are identical and for an arbitrary connection there is a unique
connection with vanishing torsion and with the same geodesics. If we have an
affine connection with non-symmetric Christoffel symbols Γijk, it has the same

geodesics as its symmetric part
Γijk+Γikj

2 , so without loss of generality we may
assume in our case that all connections are symmetric, so we will be considering
mappings Γ(·, ·, ·) which are symmetric in their first two arguments.

Proposition 6.11 (M. Pálfia [56]). Suppose that Γ(·, ·, ·), expI(·), expp(·) are
functions given with the above properties. Then

Γ(X,X, p) = p1/2Γ
(
p−1/2Xp−1/2, p−1/2Xp−1/2, I

)
p1/2 (6.76)

for p ∈ P(n,C) and X ∈ H(n,C).

Proof. Let γ(t) = expI
(
p−1/2Xp−1/2t

)
. Since expI is an analytic function we

have

γ′(t) = p−1/2Xp−1/2 exp′I

(
p−1/2Xp−1/2t

)
γ′′(t) = p−1/2Xp−1/2 exp′′I

(
p−1/2Xp−1/2t

)
p−1/2Xp−1/2.

(6.77)
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By the geodesic equations we have

γ′′(t) = −Γ (γ′(t), γ′(t), γ(t))

exp′′I

(
p−1/2Xp−1/2t

)
= −p1/2X−1p1/2Γ

(
p−1/2Xp−1/2 exp′I

(
p−1/2Xp−1/2t

)
,

p−1/2Xp−1/2 exp′I

(
p−1/2Xp−1/2t

)
, expI

(
p−1/2Xp−1/2t

))
p1/2X−1p1/2.

(6.78)

If we consider the geodesic equations for γ(t) = expp(Xt) we get

exp′′I

(
p−1/2Xp−1/2t

)
= −p1/2X−1Γ

(
Xp−1/2 exp′I

(
p−1/2Xp−1/2t

)
p1/2,

p1/2 exp′I

(
p−1/2Xp−1/2t

)
p−1/2X, p1/2 expI

(
p−1/2Xp−1/2t

)
p1/2

)
X−1p1/2.

(6.79)

The left hand sides of the two equations above are the same so as the right
hand sides. Taking t = 0 and that exp′I(0) = I, expI(0) = I we get for all
p ∈ P(n,C), X ∈ H(n,C) that

p1/2X−1p1/2Γ
(
p−1/2Xp−1/2, p−1/2Xp−1/2, I

)
p1/2X−1p1/2 =

= p1/2X−1Γ (X,X, p)X−1p1/2,
(6.80)

which proves the assertion.

By the above result we have just reduced the problem of characterizing
Γ (X,X, p) to the characterization of Γ (X,X, I). Now we will show that Γ (X,X, p)
is invariant under similarity transformations.

Proposition 6.12 (M. Pálfia [56]). For all p ∈ P(n,C) and X ∈ H(n,C) and
invertible S we have

Γ
(
SXS−1, SXS−1, SpS−1

)
= SΓ (X,X, p)S−1. (6.81)

Proof. We have by the geodesic equations

X2 exp′′I (Xt) = −Γ (X exp′I(Xt), X exp′I(Xt), expI(Xt))

SX2 exp′′I (Xt)S−1 = −SΓ (X exp′I(Xt), X exp′I(Xt), expI(Xt))S
−1.

(6.82)

Similarly if we consider the geodesic equations for the curve expI
(
SXS−1t

)
we

get

SX2S−1 exp′′I (SXS−1t) = −Γ
(
SXS−1 exp′I(SXS

−1t), SXS−1 exp′I(SXS
−1t),

expI(SXS
−1t)

)
SX2 exp′′I (Xt)S−1 = −Γ

(
SX exp′I(Xt)S

−1, SX exp′I(Xt)S
−1,

S expI(Xt)S
−1
)

.

(6.83)
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Again since the above two equations are identical we get the assertion.

By the above proposition we have for hermitian X that

Γ (X,X, I) = UΓ (D,D, I)U∗, (6.84)

for some diagonal D and unitary U , so it is enough to characterize Γ (X,X, I)
for diagonal X.

Theorem 6.13 (M. Pálfia [56]). Let D be diagonal with real coefficients. Then

Γ (D,D, I) = −cD2, (6.85)

for some real valued constant c.

Proof. First we will show that Γ (I, I, I) = cI for some real constant c. Consider
the case when γ(t) = expI(λIt) for some real λ. Then by the geodesic equations
for γ(t) we have

λ2 exp′′I (λIt) = −Γ (λ exp′I(λIt), λ exp′I(λIt), expI(λIt)) . (6.86)

By linearity of Γ(·, ·, ·) in the first two variables, this is equivalent to

λ2 exp′′I (λIt) = −λ2Γ (exp′I(λIt), exp′I(λIt), expI(λIt)) . (6.87)

Letting t = 0 we get
cI = −Γ (I, I, I) , (6.88)

where c = exp′′I (0) is a real number, since expI : H(n,C) 7→ P(n,C) is an
analytic function with real coefficients in its Taylor series.

The next step is to show that for a projection P = P 2 = P ∗ we have
Γ (P, P, I) = −cP . Consider again γ(t) = expI(Pt). Then the geodesic equa-
tions read

P 2 exp′′I (Pt) = −Γ (P exp′I(Pt), P exp′I(Pt), expI(Pt)) . (6.89)

Since P 2 = P and again letting t = 0 we get

cP = −Γ (P, P, I) , (6.90)

where c is trivially the same constant as determined above for Γ (I, I, I). Now
suppose that we have two mutually orthogonal projections P1, P2 such that
P1P2 = 0. Then we have for the projection P1 +P2 using linearity of Γ(·, ·, ·) in
the first two variables that

Γ (P1, P1, I) + Γ (P2, P2, I) = −c(P1 + P2) = Γ (P1 + P2, P1 + P2, I) =

= Γ (P1, P1, I) + Γ (P1, P2, I) + Γ (P2, P1, I) + Γ (P2, P2, I) ,
(6.91)

which yields that for mutually orthogonal projections P1, P2 we get the orthog-
onality relation

Γ (P1, P2, I) = 0. (6.92)
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Finally since a diagonal D can be written as D =
∑
i λiPi for mutually

orthogonal projections Pi, we have

Γ (D,D, I) = Γ

(∑
i

λiPi,
∑
i

λiPi, I

)
=

=
∑
i

λ2
iΓ (Pi, Pi, I) = −

∑
i

λ2
i cPi =

= −cD2,

(6.93)

which is what needed to be shown.

The above three theorems with the other preceding results presented here,
lead us to the concluding

Theorem 6.14 (M. Pálfia [56]). All affine matrix means M(X,Y ) are of the
form

M(X,Y ) =

X
1/2

[
I+(X−1/2Y X−1/2)

1−κ

2

] 1
1−κ

X1/2 if κ 6= 1,

X1/2
(
X−1/2Y X−1/2

)1/2
X1/2 if κ = 1,

(6.94)

where 0 ≤ κ ≤ 2. The symmetric affine connections corresponding to these
means are

∇XpYp = DY [p][Xp]−
κ

2

(
Xpp

−1Yp + Ypp
−1Xp

)
. (6.95)

Proof. By Proposition 6.11, 6.12 and Theorem 6.13 we have that the functions
Γ(·, ·, ·) : H(n,C) × H(n,C) × P(n,C) 7→ H(n,C) representing the Christoffel
symbols are of the form

Γ(X,X, p) = −cXp−1X. (6.96)

This formula determines the functions that are the symmetric parts of the pos-
sible connections, and these connections have geodesics determined by The-
orem 6.7 in the form (6.94). Again by Proposition 15 and Corollary 16 of
Chapter 6 in [73] we know that connections which have the same torsion and
geodesics are identical and for an arbitrary connection there is a unique con-
nection with vanishing torsion and with the same geodesics. So in other words
since the connections (6.95) are symmetric, affine and have the same geodesics,
therefore they give the sought symmetric connections for each κ if we choose
c = κ.

The corresponding midpoint operations have the form (6.57), and these are
matrix means if and only if κ ∈ [0, 2], since the representing functions f(t) in
(6.17) turn out to be operator monotone only in these cases (see again exercise
4.5.11 [11]). This gives us the complete classification of affine matrix means.
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It turned out so far that only 3 symmetric matrix means are midpoint oper-
ations on a Riemannian manifold. Even more, only a one real parameter family
of symmetric matrix means are midpoint operations on affinely connected man-
ifolds. These cases although do not cover the possible Finslerian manifolds,
or other metric spaces, however the sparsness of them suggests us that there
should be only slight hope for finding other such families of symmetric matrix
means. Even in this one real parameter family it is not hard to see that they
cannot be midpoints of a Finslerian space, since in that case the space should be
Riemannian, which is generally not the case, except the cases of the arithmetic,
geometric and harmonic means.

The above might be a disappointing result, since we cannot use the metric
space machinery of the previous section in general, however we will see in the fol-
lowing sections, that we do not have to. We will prove that the Iterative process
the ALM-process and even the BMP-process converges for all symmetric matrix
means. The BMP-process requires a weighted counterpart for each symmetric
matrix mean. At the moment, these are only given for affine matrix means as
geodesic lines, but we will show that it is possible to define a weighted counter-
part for every symmetric matrix mean without affine geodesy. Essentially the
next section will be about how to mimic these geometric structures and proofs,
or in other words: how to do geometry without geometric structures.

7 Extensions of Matrix Means without Metric
Structures

We have seen so far how well applicable are these metric structures. But this
purely geometrical framework works only in the case of the geometric mean,
the other two known cases are not of deep interest, the arithmetic and the
harmonic means are trivially extendable to several variables. At this point
our problem is that we cannot use the metric geometric machinery for other
symmetric matrix means to extend them to multiple variables. Clearly we
cannot talk about the center of mass, since without metric structures, it does
not exist. However we will be able to use somehow the Euclidean structure of
P(n,C) which corresponds to the arithmetic mean. We will combine it with the
partial order of P(n,C), the positive definite order. First we will consider the
Iterative mean process given in Definition 5.3 for all symmetric matrix means
and prove its convergence in general.

7.1 Iterative Mean for all Matrix Means

We will be considering not necessarily symmetric means, so we have to generalize
the procedure given in Definition 5.3. The following algorithm is by M. Pálfia
[54].

The next section is devoted to the proof of the assertion that the sequences
(Xk

i )k≥0, i = 1, . . . , n, generated by Algorithm 2 are convergent and have the
same limit point. Note that this limit point depends on the data X and M ,

72



1

2

5

1

4

5

3

2

4

3

Figure 5: Example of graph Gk for step 4 of Algorithm 2. If this graph is chosen
in step 4, then step 6 yields Xk+1

1 = M(Xk
1 , X

k
5 ), Xk+1

2 = M(Xk
2 , X

k
3 ), etc.

Algorithm 2 Iterative extension of a 2-variable matrix mean

1: Data: X = (X1, . . . , Xn) ∈ P(r,C)n; a 2-variable matrix mean M : P(r,C)×
P(r,C)→ P(r,C).

2: Initialization: X0
i := Xi, i = 1, . . . , n.

3: for k = 0, 1, . . . do
4: Choose a directed graph Gk with n vertices labelled from 1 to n and n

edges labelled from 1 to n, such that Gk is connected as an undirected
graph and every vertex has exactly two edges connected to it; see figure 5
for an example.

5: for i = 1, . . . , n do
6: Xk+1

i := M(Xk
ji
, Xk

li
), where ji is the tail vertex and li the head vertex

of edge i in Gk.
7: end for
8: end for
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and also, in general, on the graphs Gk chosen in step 4 of Algorithm 2. In
order to emphasize this dependence, we will later on denote this limit point by
MG(X1, . . . , Xn), where G stands for (Gk)k≥0.

7.1.1 Proof of the convergence of the procedure

In this section we will prove the convergence of the sequences of matrices given in
Algorithm 2 to a common limit point. We begin with showing the boundedness
of sequences in Algorithm 2, then we prove an inequality which is similar to
the semi-parallelogram law at a certain point in the set P(r,C). After these
preparations we move on to the main proof. At the end of the section, some
convergence related questions of the limit point of the sequences in Algorithm 2
are covered as well.

Lemma 7.1 (M. Pálfia [54]). The sequences given in Algorithm 2 are bounded
for all n.

Proof. Let D0
i be matrices such that D0

i ≥ X0
i and D0

1 ≤ D0
2, . . . ≤ D0

n. Set up
the iteration given in Algorithm 2 on the D0

i matrices with the same infinite
sequence of graphs as given for the Xk

i matrices. Considering property (3.2)
and the monotonicity property, it is easy to see that Xk

i ≤ Dk
i and Dk

i ≤ D0
n

for all i and k. Therefore every Xk
i is bounded above by D0

n for all i and k. In
the same way we may construct the lower bound as well.

We advance further by showing that a ”semi-parallelogram law”

d(X,M(A,B))2 ≤ d(X,A)2 + d(X,B)2

2
− 1

4
d(A,B)2 (7.1)

holds for X = 0 for the distance function defined by

d(A,B)2 = Tr {(A−B)∗(A−B)} , (7.2)

which is induced by the Hilbert-Schmidt inner product.
First of all, note that we are in the set P(r,C). Each element of this set

of finite norm is of finite distance from the 0 matrix measured with the above
distance function.

Lemma 7.2 (M. Pálfia [54]). For the distance function (7.2) and for any matrix
mean function M(A,B) ≤ A+B

2 the following holds

d(0,M(A,B))2 ≤ d(0, A)2 + d(0, B)2

2
− 1

4
d(A,B)2. (7.3)

Proof. We will show that the above inequality can be reduced to an easier one,
which can be easily proved to be true. So using the distance function (7.2), the
above equation is equivalent to

Tr {M(A,B)∗M(A,B)} ≤ Tr {A∗A}+ Tr {B∗B}
2

−

−Tr {A
∗A}+ Tr {B∗B} − Tr {A∗B} − Tr {B∗A}

4
.
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Noticing the fact that all of the matrices are hermitian we get

Tr
{
M(A,B)2

}
≤
Tr
{
A2
}

+ Tr
{
B2
}

+ Tr {AB +BA}
4

= Tr

{(
A+B

2

)2
}

0 ≤ Tr

{(
A+B

2

)2

−M(A,B)2

}

0 ≤ Tr
{(

A+B

2
−M(A,B)

)(
A+B

2
+M(A,B)

)}
(7.4)

Thus we see that (7.4) is equivalent with the inequality of the assertion.
From the condition A+B

2 ≥ M(A,B) it is easy to see that A+B
2 −M(A,B)

and A+B
2 +M(A,B) are both positive definite as well, so

0 ≤
(
A+B

2
+M(A,B)

)1/2(
A+B

2
−M(A,B)

)(
A+B

2
+M(A,B)

)1/2

.

This yields (7.4), which proves the assertion.

We will also need the following preparatory lemma, which involves the arith-
metic mean.

Lemma 7.3 (M. Pálfia [54]). Let Xk
i be sequences given in Algorithm 2 with

M(A,B) ≤ A+B
2 , then ∑n

i=1X
k+1
i

n
≤
∑n
i=1X

k
i

n
. (7.5)

Proof. In one iteration step we have the following for every i

Xk+1
i = M

(
Xk
ji , X

k
li

)
≤
Xk
ji

+Xk
li

2
, (7.6)

It must be noted that every Xk
l appears twice when the Xk+1

i -s are computed
since every vertex is one of the ending points of exactly two distinct edges in
the graph Gk. So summing up these equations for every i we arrive at (7.5).

Now we are ready to prove the main theorem of this section.

Theorem 7.4 (M. Pálfia [54]). Let the matrix mean M in Algorithm 2 satisfy
M(A,B) ≤ A+B

2 for all A,B ∈ P(r,C). Then the n sequences (Xk
i )k≥0, i =

1, . . . , n, generated by Algorithm 2 converge and have the same limit point.

Proof. We begin with showing that the distances d(Xk
i , X

k
j ) are converging

to zero, where d(·, ·) is defined by (7.2). Later on we will show that the Xk
i

sequences are themselves convergent.
Let us consider one iteration step in Algorithm 2, which actually maps pairs

of Xk
i to a Xk+1

l through a graph by taking the mean M(Xk
i , X

k
j ) of the matrices
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Xk
i and Xk

j corresponding to the two vertices of an edge. From Lemma 7.2 we
get

d
(
0, X1

i

)2 ≤ d (0, Xji)
2

+ d (0, Xli)
2

2
− 1

4
d (Xji , Xli)

2
, (7.7)

where X1
i = M(Xji , Xli). Each vertex of the graph Gk (step 4 of Algorithm 2)

has exactly two edges connected to it. So if we sum up the equations above for
every edge we arrive at

n∑
i=1

d
(
0, X1

i

)2 ≤ n∑
i=1

d (0, Xi)
2 − 1

4

n∑
i=1

d (Xji , Xli)
2

. (7.8)

Applying this to every iteration step we get

n∑
i=1

d
(
0, Xk+1

i

)2
︸ ︷︷ ︸

ak+1

≤
n∑
i=1

d
(
0, Xk

i

)2
︸ ︷︷ ︸

ak

−1

4

n∑
i=1

d
(
Xk
ji , X

k
li

)2
︸ ︷︷ ︸

ek

. (7.9)

Note that the above is valid for every possible infinite sequence of graphs.
Now the sequence ak ≥ 0 measures the sum of the squared distances from

0 and the matrices of the n-tuple in every iteration step. This sequence is
monotonic decreasing and bounded from below by 0 and above by the initial
finite value a0, therefore it is convergent. From the convergence of ak and (7.9)
we have

ak+1 ≤ ak − (1/4)ek, (7.10)

which means that ek =
∑n
i=1 d

(
Xk
ji
, Xk

li

)2 → 0. Hence we know that the Xk
i

matrices are approaching one another.
Now from Lemma 7.1 it is easy to see that the matrix sequences in Algo-

rithm 2 are bounded, therefore they have a convergent subsequence of n-tuples

X
kj
i which must have the same limit point A. Let X

lj
i be another convergent

subsequence of tuples but with another limit point B. Without loss of generality
kj > lj , we have from Lemma 7.3∑n

i=1X
kj
i

n
≤
∑n
i=1X

lj
i

n
. (7.11)

But we may choose a subsequence of subsequences as kr < lr, then∑n
i=1X

kr
i

n
≥
∑n
i=1X

lr
i

n
. (7.12)

Taking the limits we have A ≤ B and A ≥ B, so A = B. Hence every convergent
subsequence of tuples has the same limit point (A, . . . , A). Since the whole
sequence of tuples is bounded, it converges to (A, . . . , A) as well.

At this point due to the Kubo-Ando theory of matrix means [36], we already
showed that the procedure converges for every symmetric matrix mean. This is
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so since the largest symmetric matrix mean is the arithmetic mean A+B
2 , refer

to Theorem (3.4).
Note that the above proof does not tell anything about the possibly different

limit points of the iterative procedures corresponding to different sequences of
graphs chosen in step 4 of Algorithm 2. These limit points generally seems to
be different, they depend on the graphs Gk chosen in every iteration step k,
similarly to the metric space case. Therefore we also introduce the following
notation in order to express this dependence on the sequence of graphs. Let us
denote the infinite sequence of graphs with

G =
{
G0, G1, . . .

}
. (7.13)

With this notation from now on we denote the common limit point of the se-
quences in Theorem 7.4 as MG(X1, . . . , Xn) to express the dependence of the
limit point on the sequence of graphs G.

The other question that one can ask (motivated by Theorem 5.6 in the
metric space case) is what is the rate of convergence of the sequences Xk

i to
the common limit MG(X1, . . . , Xn). Or more specifically how does the infinite
sequence of graphs G =

{
G0, G1, . . .

}
affect the rate of convergence. Generally

numerical experiments show that the rate of convergence should be linear for
all possible infinite sequences of graphs G. However it appears that the chosen
graphs can greatly affect the quotient of this linear convergence, similarly to the
metric space case, when we have the permutations π. The heuristic function
Idealmapping speeds up the convergence of the iterative procedure here as well.
Roughly speaking Idealmapping maximizes the length of the closed path in Gk.
By length we mean the sum of the squared distances of the matrices Xk

i from
one another measured over the edges of the closed path in Gk with the distance
function (7.2). This is just the error term ek introduced in (7.10). Now one
can conclude that as Xk

i approaches the common limit point so does ak its own
limit which is a nonnegative number. Therefore if we maximize ek in every step
we can speed up the convergence. This argument tells us how Idealmapping
works.

7.1.2 Properties of the extension MG(X1, . . . , Xn)

Now that we have proved the convergence of this extension method, we advance
further by showing some useful properties of the limit point MG(X1, . . . , Xn).

Proposition 7.5 (M. Pálfia [54]). The limit point MG(X1, . . . , Xn) of the ma-
trix sequences given in Algorithm 2 satisfies 1., 3. and 4. in Definition 4.1 with
respect to an infinite sequence of graphs G.

Proof. Poperty 1. is trivial. We prove property 4. Let X1, . . . , Xn ∈ P(r,C)
and Xi ≤ X ′i ∈ P(r,C). Let us consider one iteration step with respect to
the mapping between the n-tuple of matrices and some graph g. Compute the
means with respect to the graph g on the two n-tuple given as X1, . . . , Xn and
X ′1, . . . , X

′
n. Considering the two iteration steps with respect to the same graph
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g we get the following inequalities

M(Xi, Xj) ≤M(X ′i, X
′
j), (7.14)

for all i, j pairs by the monotonicity property of mean functions. Using again
this property and (3.2), it is easy to see that throughout the iterative process
we will have these kind of inequalities so we can see that the order of matrices
is preserved by one iteration step, thus taking the limits we can see that the
two limits will have the same order as well.

Finally poperty 3. is an easy consequence of property 1. and 4., if minimum
and maximum exist. Setting up the same iteration on the new n-tuple formed
by the minimal element we get the inequality on the left in property 3., similarly
we can obtain the inequality on the right as well.

Proposition 7.6 (M. Pálfia [54]). If M(A,B) ≤ N(A,B) ≤ (A + B)/2 are
matrix means, then the same ordering is true for the induced limit points
MG(X1, . . . , Xn) and NG(X1, . . . , Xn) of the matrix sequences given in Algo-
rithm 2 with respect to an infinite sequence of graphs G.

Proof. The proof of this assertion is very similar to the above one, the only
difference is that after one iteration we get X1

i ≤ (X ′i)
1, where X1

i = M(Xj , Xl)
and (X ′i)

1 = N(Xj , Xl) for all i. Now again considering the fact that the
monotonicity is preserved by one iteration step, we get the same ordering for
the limits.

Proposition 7.7 (M. Pálfia [54]). The limit point MG(X1, . . . , Xn) of the ma-
trix sequences given in Algorithm 2 satisfies property 6. in Definition 4.1.

Proof. Let (X ′i)
0 = CX0

i C
∗ and set up the same iteration on (X ′1)0, . . . , (X ′n)0

as on X0
1 , . . . , X

0
n. Equation (3.1) implies

CXk+1
i C∗ = CM

(
Xk
ji , X

k
li

)
C∗ = M

(
CXk

jiC
∗, CXk

liC
∗) . (7.15)

Applying this recursively in every iteration step we get

CXk
i C
∗ = (X ′i)

k. (7.16)

Taking the limit k →∞ the assertion follows.

Proposition 7.8 (M. Pálfia [54]). The limit point MG(X1, . . . , Xn) of the ma-
trix sequences given in Algorithm 2 is a continuous function in its X1, . . . , Xn

variables.

Proof. We know that for a function f : Y1 → Y2 between two metric spaces
(Y1, d1) and (Y2, d2) sequential continuity and the usual topological continuity
are equivalent. A proof can be found for example in [44]. We will show that
sequential continuity holds therefore arriving at the desired result.

We will make use of the following multiplicative metric on P(r,C)

R(A,B) = max
{
ρ(A−1B), ρ(B−1A)

}
(7.17)

for all A,B ∈ P(r,C) and ρ(A) denotes the spectral radius of A. The above
metric has the following properties [15]
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(i) R(A,B) ≥ 1,

(ii) R(A,B) = 1 iff A = B,

(iii) R(A,C) ≤ R(A,B)R(B,C),

(iv) R(A,B)−1A ≤ B ≤ R(A,B)A,

(v) ‖A−B‖ ≤ (R(A,B)− 1) ‖A‖.

An extension of this metric to P(r,C)n can be given as follows. Let X =
(X1, · · · , Xn) ∈ P(r,C)n and Y = (Y1, · · · , Yn) ∈ P(r,C)n, then we define

Rn(X,Y ) = max
1≤i≤n

{R(Xi, Yi)} . (7.18)

Now suppose we have a convergent sequence of tuples Xk =
(
Xk

1 , . . . , X
k
n

)
∈

P(r,C)n for which
(
Xk

1 , . . . , X
k
n

)
→ (X1, . . . , Xn) = X ∈ P(r,C)n. Using prop-

erty (iv) of R(A,B) we have the following inequalities

Rn(Xk, X)−1Xk
i ≤ Xi ≤ Rn(Xk, X)Xk

i . (7.19)

Now applying the monotonicity property of MG proved in Proposition 7.5 we
have with the notation ck = Rn(Xk, X) the following

MG

(
c−1
k Xk

1 , . . . , c
−1
k Xk

n

)
≤MG (X1, . . . , Xn) ≤MG

(
ckX

k
1 , . . . , ckX

k
n

)
. (7.20)

Using Proposition 7.7 we conclude that

c−1
k MG

(
Xk

1 , . . . , X
k
n

)
≤MG (X1, . . . , Xn) ≤ ckMG

(
Xk

1 , . . . , X
k
n

)
. (7.21)

Taking the limit k →∞ we have ck → 1. This shows that

lim
k→∞

MG

(
Xk

1 , . . . , X
k
n

)
= MG

(
lim
k→∞

Xk
1 , . . . , lim

k→∞
Xk
n

)
(7.22)

which is sequential continuity for MG.

Actually we have proved more above, we basically showed that for a function

Corollary 7.9 (M. Pálfia [64]). F : P(r,C)n 7→ P(r,C) which satisfies proper-
ties

1. if Xi ≤ X ′i for all i, then F (X1, . . . , Xn) ≤ F (X ′1, . . . , X
′
n),

2. F (cX1, . . . , cXn) = cF (X1, . . . , Xn) for real c > 0,

it follows that F is continuous.

This also shows

Corollary 7.10 (M. Pálfia [64]). Property (iv) is superfluous in Definition 3.1
of Kubo-Ando connection theory.
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We would like to point out that this is the second time so far that we have
seen an inequality of the form

ak+1 ≤ ak − (k/8)ek. (7.23)

This inequality played a fundamental role in the proofs of Theorem 5.5 and 7.4
with k = 2 in the second case. We will meet with this inequality for a couple of
times later as well.

7.2 Weighted Means Revisited

In the previous subsection we have seen that it is possible to show that the
Iterative mean procedure works for all symmetric matrix means, without invok-
ing a strong geometrical framework attached to each symmetric matrix mean.
We will see in this section that even weighted counterparts corresponding to a
symmetric matrix mean are constructable without affine geodesic structures. In
this case as well, we will follow geometric intuition, although the proofs will be
of matrix analytical nature.

First of all we define a procedure for every symmetric matrix mean M(A,B)
and for all t ∈ [0, 1] which will be our weighted mean. Our procedure will be
based on the fact that every t ∈ [0, 1] can be approximated by dyadic rationals
m
2n since dyadic rationals are dense in [0, 1].

Definition 7.1 (Weighted mean process, M. Pálfia [64]). Let M(·, ·) be a sym-
metric matrix mean, A,B ∈ P(r,C) and t ∈ [0, 1]. Let a0 = 0 and b0 = 1,
A0 = A and B0 = B. Define an, bn and An, Bn recursively by the following
procedure for all n = 0, 1, 2, . . . :

if an = t then
an+1 = an and bn+1 = an, An+1 = An and Bn+1 = An

else if bn = t then
an+1 = bn and bn+1 = bn, An+1 = Bn and Bn+1 = Bn

else if an+bn
2 ≤ t then

an+1 = an+bn
2 and bn+1 = bn, An+1 = M(An, Bn) and Bn+1 = Bn

else
bn+1 = an+bn

2 and an+1 = an, Bn+1 = M(An, Bn) and An+1 = An
end if

According to the above an+1, bn+1 and An+1, Bn+1 are clearly defined with
respect to an, bn and An, Bn recursively.

This algorithm may also be regarded as a kind of binary search with recur-
rence relation:

if t = t1+t2
2 then

Mt(A,B) = M (Mt1(A,B),Mt2(A,B))
end if

Theorem 7.11 (M. Pálfia [64]). The sequences An and Bn given in Definition
7.1 are convergent and have the same limit point.
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Proof. In the case if t = m2−k for some integer m and k then there is nothing
to prove, the procedure converges after finite steps. So suppose that t is not a
dyadic rational. We will make use the already introduced (7.17) multiplicative
metric on P(r,C) [5]

R(A,B) = max
{
ρ(A−1B), ρ(B−1A)

}
(7.24)

for allA,B ∈ P(r,C) and ρ(A) denotes the spectral radius ofA. SinceR(A,B) =
R(I, A−1/2BA−1/2) we have

R (A,M(A,B)) = R
(
I, f

(
A−1/2BA−1/2

))
, (7.25)

where f(t) is the corresponding normalized operator monotone function. Now
since M(A,B) is symmetric Theorem 3.4 holds. From this for the corresponding
normalized operator monotone function f(t) we have

2
(
I +X−1

)−1 ≤ f(X) ≤ I +X

2
. (7.26)

This also yields that R(I, f(X)) ≤ max
{
ρ( I+X2 ), ρ( I+X

−1

2 )
}

= 1+R(I,X)
2 for

every X ∈ P(r,C), so

R (A,M(A,B)) ≤ 1 +R(A,B)

2
. (7.27)

By the above inequality we can easily conclude the following for the sequences
An, Bn

R(An+1, Bn+1) ≤ 1 +R(An, Bn)

2
= 1 +

1

2
[R(An, Bn)− 1]

R(An, Bn) ≤ 1 +
1

2n
[R(A0, B0)− 1]

R(An, An+1) ≤ 1 +
1

2
[R(An, Bn)− 1]

R(An, An+1) ≤ 1 +
1

2n
[R(A0, B0)− 1] .

(7.28)

There exists K ∈ P(r,C) such that A ≤ K,B ≤ K and by property (ii) of
matrix means An ≤ K,Bn ≤ K so by property (v). of R(·, ·)

‖An+1 −An‖ ≤ (R(An+1, An)− 1) ‖K‖

‖An+1 −An‖ ≤
1

2n
[R(A0, B0)− 1] ‖K‖

∞∑
n=0

‖An+1 −An‖ ≤
∞∑
n=0

1

2n
[R(A0, B0)− 1] ‖K‖ =

= 2 [R(A0, B0)− 1] ‖K‖ .

(7.29)

This means that An is a Cauchy sequence therefore convergent and by the above
we also have that ‖An −Bn‖ → 0 so both An and Bn converge to the same
limit point.
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We will base our weighted mean on the above theorem.

Definition 7.2 (Weighted mean, M. Pálfia [64]). The common limit point of
An, Bn in Theorem 7.11 will be denoted by Mt(A,B) and from now on in the
article is considered as the corresponding weighted mean to a symmetric matrix
mean M(·, ·).

What are the properties of this weighted mean? First of all it is not hard to
prove the following

Proposition 7.12 (M. Pálfia [64]). Mt(A,B) yields the correct corresponding
weighted means in the case of the arithmetic, geometric, harmonic means.

The above is a consequence of the affine geodesy of the corresponding man-
ifolds mentioned above. There are further important properties which are ful-
filled by Mt(A,B):

Proposition 7.13 (M. Pálfia [64]). Mt(A,B) for A,B ∈ P(r,C) and t ∈ [0, 1]
fulfills the following properties

(i’) Mt(I, I) = I,

(ii’) if A ≤ A′ and B ≤ B′, then Mt(A,B) ≤Mt(A
′, B′),

(iii’) CMt(A,B)C ≤Mt(CAC,CBC),

(iv’) if An ↓ A and Bn ↓ B then Mt(An, Bn) ↓Mt(A,B),

(v’) if N(A,B) ≤M(A,B) then Nt(A,B) ≤Mt(A,B),

(vi’) M1/2(A,B) = M(A,B),

(vii’) Mt(A,B) is continuous in t,

Proof. Property (i’) and (ii’) are trivial consequences of the similar properties
for symmetric matrix means.

For property (iii’) consider A′ = CAC and B′ = CBC and start the
procedure in the definition of Mt(·, ·) for the pair A,B and A′, B′. Then
we have CA1C = CM(A0, B0)C ≤ M(CA0C,CB0C) = A′1 if t > 1/2 or
CB1C = CM(A0, B0)C ≤ M(CA0C,CB0C) = B′1. Now for every n we
use property (ii) for symmetric matrix means so we have CAnC ≤ A′n and
CBnC ≤ B′n for every n ≥ 1. Taking the limits we conclude the assertion of
property (iii’).

What immediately follows from this property is that M(CXC∗, CY C∗) =
CM(X,Y )C∗ for all invertible C. Now using Corollary 7.9 see that Mt(A,B) is
continuous in A,B so by property (ii’) and the continuity we get property (iv’)
as a consequence.

At this point we already have by the Kubo-Ando theory of matrix means that
Mt(A,B) is a matrix mean as well, so it fulfills the additional properties (v)-
(ix). Consequently it has a representation with a normalized operator monotone
function.
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Property (v’) is an easy consequence of repeated usage of property (ii) for
matrix means for every n. Property (vi’) is also trivial.

To prove property (vii’) we have to do a bit more work. We have to show that
if |t1 − t2| → 0 then also ‖Mt1(A,B)−Mt2(A,B)‖ → 0. Suppose t1 < t2 and
take the smallest j for which we have t1 ≤ m2−j ≤ t2 for some m. Let us set up
the iterative procedure in Definition 7.1 on A,B with t1 and t2 respectively. Let
us denote the yielded matrix sequences in the case of t1 with At1i , B

t1
i and in the

case of t2 with At2i , B
t2
i and similarly for the numbers with at1i , b

t1
i and at2i , b

t2
i .

Notice that the iterative procedure in the jth step for t1 will yield bt1j = m2−j

and similarly at2j = m2−j in the jth step for t2. Suppose t1 6= m2−j . Then

there exists i ≥ j such that at1i ≤ t1 ≤ bt1i but (at1i + bt1i )/2 ≥ t1, this means
that bt1i+1 6= bt1i . If t1 = m2−j then we have at1p = bt1p = t1 for p > j and in this
case we define i := +∞. Similarly either there exists a smallest l ≥ j such that
at2l+1 6= at2l , or we have t2 = m2−j so at2p = bt2p = t2 for p > j and again then we
define l := +∞. Notice that i and l cannot be infinite at the same time, so we
define k := min {i, l}. It is easy to see that as t1 → t2, k → ∞. We also have
that Bt1k = At2k , so we can bound the distance of the limit points Mt1(A,B) and
Mt2(A,B) from Bt1k = At2k as follows:∥∥∥∥Bt1k − lim

j→∞
Bt1j

∥∥∥∥ ≤ ∞∑
i=k

∥∥Bt1i+1 −B
t1
i

∥∥
∞∑
i=k

∥∥Bt1i+1 −B
t1
i

∥∥ ≤ 1

2k
2 [R(A0, B0)− 1] ‖K‖ =

=
1

2k−1
[R(A0, B0)− 1] ‖K‖ .

(7.30)

We also have the same bound for
∥∥At2k − limj→∞At2j

∥∥. Since Bt1k = At2k , we
have

‖Mt1(A0, B0)−Mt2(A0, B0)‖ ≤
∥∥Mt1(A0, B0)−Bt1k

∥∥+

+
∥∥Mt2(A0, B0)−At2k

∥∥ ≤
≤ 1

2k−2
[R(A0, B0)− 1] ‖K‖ .

(7.31)

Since k →∞ as t1 → t2, by the above ‖Mt1(A,B)−Mt2(A,B)‖ → 0.

By the above proposition we have that Mt(A,B) is a continuous function
in t. So Mt(A,B) is a one parameter family of matrix means corresponding to
every symmetric matrix mean. Since every matrix mean by virtue of property
(ix) is representable by a normalized operator monotone function f(x), we may
represent such one parameter family of matrix means by a one parameter family
of normalized operator monotone functions ft(x), t ∈ [0, 1]. So in other words
we have the following

Corollary 7.14 (M. Pálfia [64]). For every symmetric matrix mean M(A,B)
there is a corresponding one parameter family of weighted means Mt(A,B) for
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t ∈ [0, 1]. Let f(x) be the normalized operator monotone function corresponding
to M(A,B). Then similarly we have a one parameter family of normalized
operator monotone functions ft(x) corresponding to Mt(A,B). The family ft(x)
is continuous in t, and f0(x) = 1 and f1(x) = x are the two extremal points, so
ft(x) interpolates between these two points.

Based on this phenomenon we can conclude the following

Proposition 7.15 (M. Pálfia [64]). Let M(A,B) be a symmetric matrix mean.
Then (

(1− t)A−1 + tB−1
)−1 ≤Mt(A,B) ≤ (1− t)A+ tB, (7.32)

where Mt(A,B) is the weighted version of M(A,B).

Proof. For every symmetric matrix mean M(A,B) we have by Theorem 3.4 that(
A−1 +B−1

2

)−1

≤M(A,B) ≤ A+B

2
. (7.33)

Now what follows from Propostion 7.12 is that the harmonic mean on the left
hand side above has the weighted harmonic mean Ht(A,B) defined in (4.66) as
its weighted counterpart, and similarly we have the weighted arithmetic mean
At(A,B) defined in (4.65) as the weighted counterpart for the arithmetic mean
on the right hand side above. Thus by property (v’) in Proposition 7.13 and
the above inequality we have

Ht(A,B) ≤Mt(A,B) ≤ At(A,B). (7.34)

We are going to use the above definition Mt(A,B) of a weighted matrix
mean to set up the Bini-Meini-Poloni procedure for every symmetric matrix
mean, but before we do that we turn to the Ando-Li-Mathias procedure in the
following section and prove its convergence for every symmetric matrix mean.

7.3 Ando-Li-Mathias Procedure Revisited

In this section we will prove the convergence of the Ando-Li-Mathias procedure
for every possible symmetric matrix mean. In order to do that we will generalize
the argument given for the Iterative mean in the case of all symmetric matrix
means by applying induction. First of all let us recall Definition 4.4, the Ando-
Li-Mathias procedure [5]:

Definition 7.3 (ALM iteration). Let X = (X0
1 , . . . , X

0
n) where X0

i ∈ P(r,C)
and define the mapping M(X1, . . . , Xn) inductively as follows. If n = 2 assume
that M(X1, X2) is already given. For general n > 2 assume that M(X1, . . . ,
Xn−1) is already defined. Then using M(X1, . . . , Xn−1), set up the iteration

X l+1
i = M

(
Z 6=i

(
X l

1, . . . , X
l
n

))
, (7.35)

84



where Z 6=i(X
l
1, . . . , X

l
n) = X l

1, . . . , X
l
i−1, X

l
i+1, . . . , X

l
n. If the sequences X l

i con-
verge to a common limit point for every i, then define

lim
l→∞

X l
i = M(X0

1 , . . . , X
0
n). (7.36)

Theorem 7.16 (M. Pálfia [64]). Let F : P(r,C)2 7→ P(r,C) and suppose that
F (A,B) fulfills one of the inequalities below:(

A−1 +B−1

2

)−1

≤ F (A,B) ≤
[
A2 +B2

2
− k

8
(A−B)2

]1/2

(7.37)

for a k ∈ (0, 2], or

F (A,B) ≤ A+B

2
. (7.38)

Then in Definition 4.4 starting with M(A,B) := F (A,B), M(X1, . . . , Xn) exists
for all n, in other words the sequences converge to a common limit point for all
n.

Before we prove the above theorem we mention a few remarks and several
lemmas which we will make use of later. First of all condition (7.37) might seem
a bit strange at first glance although it immediately becomes straightforward if
we consider k = 2, since in this case the right hand side becomes the arithmetic

mean. If k = 0 then the right hand side is the square mean
(
A2+B2

2

)1/2

. This

literally means that the above theorem automatically covers every symmetric
matrix mean due to Theorem 3.4 as a special case.

Now we have to study some properties of the square mean in order to pre-
pare the necessary steps for the proof of the above theorem. First of all one
should notice that the square mean is an affine mean. The underlying man-
ifold is a Riemannian manifold defined as a pullback metric of the Euclidean
metric 〈A,B〉E = Tr {A∗B} over the space of squared complex matrices. This
Euclidean metric has corresponding distance function

dE(A,B)2 = 〈A−B,A−B〉E =

= Tr
{

(A−B)
∗

(A−B)
}

.
(7.39)

The isometry is f(x) = x2 and it embeds P(r,C) into P(r,C). The distance
function of the pullback metric on P(r,C) is

d1/2(A,B)2 = 〈f(A)− f(B), f(A)− f(B)〉E =

= Tr
{(
A2 −B2

)∗ (
A2 −B2

)}
.

(7.40)

The geodesics of this metric are of the form

γA,B(t) = f−1 [(1− t)f(A) + tf(B)] =
[
(1− t)A2 + tB2

]1/2
. (7.41)

This shows that square mean is an affine mean, so the weighted mean process
Mt(A,B) for the square mean gives back the corresponding point on the geodesic
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above. Furthermore since the above metric is a pullback of a Euclidean metric,
it is also Euclidean.

Actually the isometry f(x) can be chosen arbitrarily, particularly any dif-
feomorphism will suffice. We are going to derive some properties of the ALM-

procedure with F (A,B) =
(
A2+B2

2

)1/2

and F (A,B) =
(
A−1+B−1

2

)−1

on P(r,C)

endowed with the above corresponding pullback metrics. We are going to denote
the general pullback of the distance function dE(·, ·) for an arbitrary f by

df (A,B)2 = 〈f(A)− f(B), f(A)− f(B)〉E =

= Tr
{

[f(A)− f(B)]
∗

[f(A)− f(B)]
}

.
(7.42)

The metric space P(r,C) with the distance function (7.42) is Euclidean,
since its metric is a pullback metric of the standard Euclidean metric on the
space of complex r × r matrices. Let xi ∈ P(r,C) for i ∈ {1, . . . , n} and define
S = {x1, . . . , xn}. We already know that the function

b(x) =

n∑
i=1

d(x, xi)
2 (7.43)

has a minimum for d(·, ·) = df (·, ·) and this minimal value is attained at a
unique point x̂ which is called the center of mass of S. Moreover the center of
mass is explicitly given for these metric spaces on P(r,C) by Proposition 4.13.
If we perform one ALM-iteration step on n points in the space P(r,C) with this
map then the iteration leaves the center of mass of the points invariant.

Proposition 7.17 (M. Pálfia [64]). Let X0
i ∈ P(r,C) for i = 1, . . . , n. Then

the ALM-procedure (Definition 4.4) set up on the matrices X0
1 , . . . , X

0
n with the

n−1 variable function M(x1, . . . , xn−1) = f−1
(∑n−1

i=1 f(xi)

n−1

)
leaves the Riemann

centroid of the points X0
1 , . . . , X

0
n invariant with respect to the distance function

(7.42).

Proof.

f−1

(∑n
i=1 f

(
X1
i

)
n

)
= f−1

[
n∑
i=1

f
(
M
(
Z6=i(X

0
1 , . . . , X

0
n)
))

n

]
=

= f−1

 n∑
i=1

∑n−1
j=1,j 6=i

f(X0
j )

n−1

n

 = f−1

(∑n
i=1 f

(
X0
i

)
n

) (7.44)

Similarly we obtain the above equality for every iteration step, so

f−1

(∑n
i=1 f

(
X l+1
i

)
n

)
= f−1

(∑n
i=1 f

(
X l
i

)
n

)
= f−1

(∑n
i=1 f

(
X0
i

)
n

)
.

(7.45)
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We turn our attention to more general functions than these pullback means.
The following inequalities will turn out to be useful tools later.

Lemma 7.18 (M. Pálfia [64]).[
(1− t)A2 + tB2 − k2

2
t(1− t)(A−B)2

]1/2

≤

≤
[
(1− t)A2 + tB2 − k1

2
t(1− t)(A−B)2

]1/2
(7.46)

for any A,B ∈ P(r,C) and t ∈ [0, 1] if k1 ≤ k2.

Proof.

0 ≤k2 − k1

2
t(1− t)(A−B)2

−k2

2
t(1− t)(A−B)2 ≤− k1

2
t(1− t)(A−B)2

(1− t)A2 + tB2 − k2

2
t(1− t)(A−B)2 ≤

≤(1− t)A2 + tB2 − k1

2
t(1− t)(A−B)2

Taking the square root of both sides and considering the fact that the the square
root is operator monotone we get the inequality of the assertion.

Notice that for k1 = 0 and k2 = 2 we get the weighted arithmetic-square
mean inequality

(1− t)A+ tB ≤
[
(1− t)A2 + tB2

]1/2
. (7.47)

We will prove an important inequality which will play a fundamental role in
our further investigations. An important part of the proof of the convergence
of the ALM- and BMP-process will rely on this inequality.

Lemma 7.19 (M. Pálfia [64]). Let k ∈ [0, 2], F : P(r,C)2 7→ P(r,C) and

F (A,B) ≤
[
(1− t)A2 + tB2 − k

2
t(1− t)(A−B)2

]1/2

. (7.48)

Then with the distance function dE(A,B)2 = Tr {(A−B)∗(A−B)},

dE (0, F (A,B))
2 ≤ (1− t)dE(0, A)2 + tdE(0, B)2 − k

2
t(1− t)dE(A,B)2. (7.49)
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Proof. By substitution the assertion has the following form

Tr
{
F (A,B)2

}
≤ Tr

{
(1− t)A2 + tB2 − k

2
t(1− t)(A−B)2

}
. (7.50)

This holds, since we have the following identity for hermitian positive definite
X ≤ Y

0 ≤ Tr
{
Y 2 −X2

}
= Tr {(Y −X)(Y +X)} . (7.51)

By choosing X = F (A,B)−
[
(1− t)A2 + tB2 − k

2 t(1− t)(A−B)2
]1/2

and Y =

F (A,B) +
[
(1− t)A2 + tB2 − k

2 t(1− t)(A−B)2
]1/2

we get the assertion.

Notice that the above lemma is already true for every matrix mean M(A,B)
and their weighted Mt(A,B) counterparts by Lemma 7.15 and (7.47). By
Lemma 7.18 we also have a relatively wide family of functions which fulfills
the conditions of the above lemma.

Now we are in position to prove Theorem 7.16.

Proof. (Theorem 7.16) The proof will be based on induction on the number of
matrices n. We are going to measure the sum of the squared distances of the
matrices X l

i from the zero matrix with respect to the distance function (7.39)
with

aln =

n∑
i=1

dE(0, X l
i)

2 =

n∑
i=1

Tr
{

(X l
i)

2
}

. (7.52)

We will also measure sum of the squared distances of the X l
i from one another.

We will form this sum over all possible pairs of X l
i as

eln =
∑

1≤i<j≤n

dE(X l
i , X

l
j)

2 =
∑

1≤i<j≤n

Tr
{

(X l
i −X l

j)
2
}

. (7.53)

We are going to denote the common limit point of the sequences X l
i by

Fn(X0
1 , . . . , X

0
n) for n. We will need the following lemmas which will be proved

by induction as well on the number of matrices n, so we have to embed these
lemmas into this proof of Theorem 7.16. All three lemmas will be proved by
assuming that they hold for n matrices and also that the ALM-procedure con-
verges to common limit for n matrices. Making this assumption we show that
the lemmas hold for n + 1 and that the ALM procedure converges to common
limit for n+ 1 as well. For the first step of the induction (n = 3) we will prove
the lemmas directly. First we are going to treat the case of the first inequality
(7.37).

Lemma 7.20 (Monotone Iteration, M. Pálfia [64]). In the first case of inequality
(7.37) we have (∑n

i=1

(
X l+1
i

)−1

n

)−1

≥

(∑n
i=1

(
X l
i

)−1

n

)−1

. (7.54)
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In the second case of inequality (7.38) we have∑n
i=1X

l+1
i

n
≤
∑n
i=1X

l
i

n
. (7.55)

Proof. We argue by induction on the number of matrices n by making the
assumption that the ALM-procedure converges for n ≥ 3 to common limit
point Fn(X0

1 , . . . , X
0
n), in other words X l

i → Fn(X0
1 , . . . , X

0
n) for n and that

the lemma holds for n. Consider the first case of inequality (7.37). Then the
inequality of the lemma for n implies that(∑n

i=1

(
X l
i

)−1

n

)−1

≥

(∑n
i=1

(
X0
i

)−1

n

)−1

(7.56)

and if we take the limit on the left hand side for n we get the inequality(∑n
i=1

(
Fn(X0

1 , . . . , X
0
n)
)−1

n

)−1

= Fn(X0
1 , . . . , X

0
n) ≥

(∑n
i=1

(
X0
i

)−1

n

)−1

.

(7.57)
The above inequality also holds directly for n = 2 by the assumption of inequal-
ity (7.37), so this will also provide the first step in our induction.

Now we prove the lemma for n+ 1 if it is true for n. By (7.57) we have

X l+1
i = Fn

(
Z 6=i(X

l
1, . . . , X

l
n+1)

)
≥

(∑n+1
j=1,j 6=i

(
X l
i

)−1

n

)−1

. (7.58)

The n+1-variable harmonic mean is operator monotone in its variables, therefore
if we take the n+ 1-variable harmonic mean of the above on the left and right
hand side, we get(∑n+1

i=1 Fn
(
Z 6=i(X

l
1, . . . , X

l
n+1)

)−1

n+ 1

)−1

≥

(∑n+1
i=1

(
H l
i

)−1

n+ 1

)−1

, (7.59)

where H l
i =

(∑n+1
j=1,j 6=i(X

l
i)
−1

n

)−1

. Then by Proposition 7.17 with f(t) = t−1,

the harmonic mean of the n+ 1 matrices is left invariant on the right hand side,
so this is equivalent to(∑n+1

i=1

(
X l+1
i

)−1

n+ 1

)−1

≥

(∑n+1
i=1

(
X l
i

)−1

n+ 1

)−1

. (7.60)

The second case given by inequality (7.38) is very similar to the proof of the
first case. Instead of inequality (7.56) we have∑n

i=1X
l
i

n
≤
∑n
i=1X

0
i

n
(7.61)
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and instead of (7.57) we have∑n
i=1 Fn(X0

1 , . . . , X
0
n)

n
= Fn(X0

1 , . . . , X
0
n) ≤

∑n
i=1X

0
i

n
. (7.62)

The rest of the argument is just the same, although we have the n-variable
arithmetic mean replacing the n-variable harmonic mean, and the inequalities
are reversed. The lemma is proved.

Lemma 7.21 (Decreasing Distances, M. Pálfia [64]). We have

al+1
n ≤ aln −

k

8
zne

l
n (7.63)

in the case of (7.37), or we have (7.63) with k = 2 in the case of (7.38). In
both cases zn = 2

n−1 .

Proof. We will prove this for the case (7.37). The second case of (7.38) is just
the same with k = 2, we will only use that the right hand side of (7.37) holds,
so we do not have to treat the second case (7.38) separately due to (7.47) with
t = 1/2. The first step is to show the above for n = 3. By Lemma 7.19 and
that the right hand side of (7.37) is equivalent to the assumption of the lemma
for t = 1/2, we have

dE
(
0, F (X l

i , X
l
j)
)2 ≤ dE(0, X l

i)
2 + d(0, X l

j)
2

2
− k

8
dE(X l

i , X
l
j)

2

dE
(
0, X l+1

s

)2 ≤ dE(0, X l
i)

2 + d(0, X l
j)

2

2
− k

8
dE(X l

i , X
l
j)

2,

(7.64)

where i, j, s ∈ {1, 2, 3} and i 6= j 6= s, s 6= i. There are 3 distinct inequalities of
the above for s = 1, 2, 3. By summing these inequalities for s we get (7.63) for
n = 3 and z3 = 1.

Now suppose (7.63) holds for n and that X l
i converge to a common limit

point for n denoted again by Fn(X0
1 , . . . , X

0
n). Then we have

aln ≤ a0
n −

k

8
zne

0
n (7.65)

and by taking the limit on the left hand side we get

lim
l→∞

aln = ndE
(
0, Fn(X0

1 , . . . , X
0
n)
)2 ≤ a0

n −
k

8
zne

0
n

dE
(
0, Fn(X0

1 , . . . , X
0
n)
)2 ≤ a0

n

n
− k

8

zn
n
e0
n.

(7.66)

Then set up the ALM-procedure on X0
i ∈ P(r,C); i = 1, 2 . . . , n+ 1 with

Mn(X1, . . . , Xn) := Fn(X1, . . . , Xn). Inequality (7.66) can be applied in any of
the iteration steps, so we get

dE
(
0, Fn

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))2 ≤
≤
∑n+1
j=1,j 6=i dE(0, X l

j)
2

n
− k

8

zn
n

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2.
(7.67)
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If we sum these inequalities for i we arrive at the following

n+1∑
i=1

dE
(
0, Fn

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))2 ≤
≤
n+1∑
i=1

∑n+1
j=1,j 6=i dE(0, X l

j)
2

n
− k

8

zn
n

n+1∑
i=1

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2.

(7.68)

The left hand side of the above is just al+1
n+1. The first term on the right hand

side is easily written as

n+1∑
i=1

∑n+1
j=1,j 6=i dE(0, X l

j)
2

n
=

n+1∑
i=1

dE(0, X l
i)

2 = aln+1. (7.69)

We have to carefully analyze the second term

n+1∑
i=1

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2. (7.70)

Consider the complete graph Kn+1 on n + 1 vertices labelled from 1 to n +
1. In this way we have a natural bijective mapping between the matrices
X l
i and the vertices of Kn+1. Then for every squared distance dE(X l

j , X
l
s)

2

we have a corresponding edge in Kn+1 of the form (j, s). Then the sum∑
1≤j<s≤n+1,j 6=i,s6=i dE(X l

j , X
l
s)

2 is just the sum of the squared distances corre-
sponding to the edges of the complete graph Kn given on the vertices {1, . . . ,
i− 1, i+ 1, . . . , n+ 1}. This is almost

∑
1≤j<s≤n+1 dE(X l

j , X
l
s)

2, but we leave
out from the sum every squared distance corresponding to an edge that has the
vertex i as an ending vertex. So actually (7.70) almost equals to

n+1∑
i=1

∑
1≤j<s≤n+1

dE(X l
j , X

l
s)

2 = (n+ 1)eln+1, (7.71)

but in the sum (7.70) every vertex has been left out once, so every squared
distance corresponding to an edge has been left out twice, hence

n+1∑
i=1

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2 = (n− 1)eln+1. (7.72)

This shows us that zn+1 = n−1
n zn and also z3 = 1, so in other words by solving

the recursion we get

zn =
2

n− 1
. (7.73)

This concludes the lemma for every n.

Lemma 7.22 (Boundedness, M. Pálfia [64]). The matrix sequences X l
i are

bounded for all n.
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Proof. We have the trivial lower bound X l
i ≥ 0, since by assumption F (A,B) ≥

0, so we have X l
i ≥ 0 for n = 3. Now assume again that the ALM-procedure

converges to common limit point denoted by Fn(X0
1 , . . . , X

0
n) for n and

Fn(X0
1 , . . . , X

0
n) ≥ 0. Then trivially for n + 1 the sequences X l

i ≥ 0 since
Fn(X0

1 , . . . , X
0
n) ≥ 0. This also shows that if the sequences converge for n+1 to

a common limit Fn+1(X0
1 , . . . , X

0
n), then this limit is also bounded from below,

so Fn+1(X0
1 , . . . , X

0
n) ≥ 0.

Now we provide a suitable upper bound as well. By the previous assertion
Lemma Decreasing Distances we have (7.63) for n ≥ 3. In particularly for
n = 3 it holds providing the first step, while for n > 3 we need the induc-
tional hypothesis that the ALM-procedure converges to a common limit point
Fn−1(X0

1 , . . . , X
0
n−1) for n − 1. The rest of the argument is just the same for

all n ≥ 3. So by (7.63) we have al+1
n ≤ aln which means that the sequence is

monotone decreasing. So we have the bound

aln ≤ a0
n = b. (7.74)

By this above we get for arbitrary i that

d
(
0, X l

i

)2
= aln −

n∑
j=1,j 6=i

d
(
0, X l

j

)2 ≤ aln ≤ b. (7.75)

This means that the norm
∥∥X l

i

∥∥ is bounded from above by b since∥∥X l
i

∥∥2
= Tr

{(
X l
i

)2}
= d

(
0, X l

i

)2
. (7.76)

This concludes the proof of the lemma.

Now we move on to the final step of the induction. We prove that for n = 3
the ALM-procedure converges and that if it converges for n then it converges
for n + 1 in both cases of inequalities (7.37) and (7.38). This last step will be
based on the three lemmas: Lemma Monotone Iteration, Lemma Decreasing
Distances and Lemma Boundedness. It is not necessary to prove separately the
n = 3 case since these three lemmas hold for n = 3 and the argument will be the
same as for general n+ 1 requiring the inductional hypothesis, the convergence
of the procedure to a common limit point for n.

So by Lemma Decreasing Distances we have

al+1
n ≤ aln −

k

8
zne

l
n, (7.77)

in other words aln is a decreasing nonnegative sequence in l, therefore convergent.
Since zn > 0 and has fixed value for each n by Lemma Decreasing Distances,
this means that eln → 0 as l → ∞, so the matrices X l

i are approaching one
another. By Lemma Boundedness we have that these sequences are bounded,
hence they have convergent subsequences. But since eln → 0 these subsequences
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are converging to a common limit point. Let Xsl
i denote a subsequence con-

verging to say A and Xrl
i another subsequence converging to B. Without loss

of generality we can take sl > rl. By Lemma Monotone Iteration for the case
of inequality (7.37) we have(∑n

i=1 (Xsl
i )
−1

n

)−1

≥

(∑n
i=1 (Xrl

i )
−1

n

)−1

. (7.78)

Now choose a subsequence of subsequences sj < rj so then again by the lemma(∑n
i=1

(
X
sj
i

)−1

n

)−1

≤

(∑n
i=1

(
X
rj
i

)−1

n

)−1

. (7.79)

Taking the limits we have A ≥ B and A ≤ B so A = B. In the second case
(7.38) we have the same argument but using the n-variable arithmetic mean
instead of the n-variable harmonic above.

Now this argument shows the convergence of the ALM-procedure to a com-
mon limit point directly for n = 3 and inductively for n assuming convergence
to common limit for n− 1.

We are going to study some properties of this limit point later, jointly with
the case of the BMP-mean, after showing that the BMP procedure converges.
In the next section we will show a similar theorem to Theorem 7.16 for the
BMP-procedure.

7.4 Bini-Meini-Poloni Procedure Revisited

In this section we will treat the case of the Bini-Meini-Poloni procedure. We
may do that for matrix means since we have defined a weighted mean Mt(A,B)
corresponding to any symmetric matrix mean M(A,B). The outline of the
proof of the convergence of the BMP-procedure will roughly follow the one of
the ALM-procedure, although some lemmas will be formulated differently.

Firstly let us recall again Definition 4.5, the Bini-Meini-Poloni procedure
[15]:

Definition 7.4 (BMP iteration). Let X = (X0
1 , . . . , X

0
n) where X0

i ∈ P(r,C)
and define the mapping M(X1, . . . , Xn) inductively as follows. If n = 2 assume
that Mt(X1, X2) is already given. For general n > 2 assume that M(X1, . . . ,
Xn−1) is already defined. Then using M(X1, . . . , Xn−1), set up the iteration

X l+1
i = Mn−1

n

(
X l
i ,M

(
Z 6=i

(
X l

1, . . . , X
l
n

)))
, (7.80)

where Z 6=i(X
l
1, . . . , X

l
n) = X l

1, . . . , X
l
i−1, X

l
i+1, . . . , X

l
n. If the sequences X l

i con-
verge to a common limit point for every i, then define

lim
l→∞

X l
i = M(X0

1 , . . . , X
0
n). (7.81)
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Theorem 7.23 (M. Pálfia [64]). Let F : [0, 1]×P(r,C)2 7→ P(r,C) and suppose
that Ft(A,B) fulfills one of the inequalities below:[

(1− t)A−1 + tB−1
]−1 ≤ Ft(A,B) ≤

≤
[
(1− t)A2 + tB2 − k

2
t(1− t)(A−B)2

]1/2 (7.82)

for a k ∈ (0, 2] and every t ∈ [0, 1], or

Ft(A,B) ≤ (1− t)A+ tB, (7.83)

for every t ∈ [0, 1]. Then in Definition 4.5 starting with Mt(A,B) := Ft(A,B),
M(X1, . . . , Xn) exists for all n, in other words the sequences converge to a
common limit point for all n.

Before we turn to the proof of the above theorem, we again consider some
lemmas which will be similar to the ALM case. Let us recall again the metric
space P(r,C) with the distance function (7.42). We already know that the
minimum of

b(x) =

n∑
i=1

df (x, xi)
2 (7.84)

is attained at a unique point in P(r,C) denoted by x̂ and we also know that

x̂ = f−1

(∑n
i=1 f(xi)

n

)
. (7.85)

We will need a similar theorem to Proposition 7.17.

Proposition 7.24 (M. Pálfia [64]). Let X0
i ∈ P(r,C) for i = 1, . . . , n. Then

the BMP-procedure (Definition 4.5) set up on the matrices X0
1 , . . . , X

0
n with the

weighted mean function Mt(A,B) := f−1 ((1− t)f(A) + tf(B)) and the n −
1 variable function M(x1, . . . , xn−1) := f−1

(∑n−1
i=1 f(xi)

n−1

)
leaves the Riemann

centroid of the points X0
1 , . . . , X

0
n invariant with respect to the distance function

(7.42).

Proof.

f−1

(∑n
i=1 f

(
X1
i

)
n

)
= f−1

 n∑
i=1

f
(
Mn−1

n

(
X0
i ,M

(
Z 6=i(X

0
1 , . . . , X

0
n)
)))

n

 =

= f−1

 n∑
i=1

f(X0
i )

n + n−1
n

∑n
j=1,j 6=i

f(X0
j )

n−1

n

 = f−1

(∑n
i=1 f

(
X0
i

)
n

)
(7.86)
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Similarly we obtain the above equality for every iteration step, so

f−1

(∑n
i=1 f

(
X l+1
i

)
n

)
= f−1

(∑n
i=1 f

(
X l
i

)
n

)
= f−1

(∑n
i=1 f

(
X0
i

)
n

)
.

(7.87)

Proof. (Theorem 7.23) The proof again will be based on induction on the num-
ber of matrices n. We will use the same notations to denote the sum of the
squared distances of the matrices X l

i from the zero matrix with respect to the
distance function (7.39), so

aln =

n∑
i=1

dE(0, X l
i)

2 =

n∑
i=1

Tr
{

(X l
i)

2
}

(7.88)

eln =
∑

1≤i<j≤n

dE(X l
i , X

l
j)

2 =
∑

1≤i<j≤n

Tr
{

(X l
i −X l

j)
2
}

. (7.89)

We will denote by F (X0
1 , . . . , X

0
n) the common limit point of the sequences

X l
i for n. The proof will rely on similar three lemmas to the ones in the proof of

the ALM-procedure. First we are going to treat the case of the first inequality
(7.82).

Lemma 7.25 (Monotone Iteration, M. Pálfia [64]). In the first case of inequality
(7.82) we have (∑n

i=1

(
X l+1
i

)−1

n

)−1

≥

(∑n
i=1

(
X l
i

)−1

n

)−1

. (7.90)

In the second case of inequality (7.83) we have∑n
i=1X

l+1
i

n
≤
∑n
i=1X

l
i

n
. (7.91)

Proof. The proof uses similar ideas to the case of Lemma Monotone Iteration
for the ALM-process. We again argue by induction on the number of matrices
n. Consider the first case of inequality (7.82). Suppose that the BMP-procedure
converges for n ≥ 3 to common limit point F (X0

1 , . . . , X
0
n) in other words X l

i →
F (X0

1 , . . . , X
0
n) for n. Also the inequality of the lemma for n implies that(∑n

i=1

(
X l
i

)−1

n

)−1

≥

(∑n
i=1

(
X0
i

)−1

n

)−1

(7.92)

and if we take the limit on the left hand side for n we get the inequality(∑n
i=1

(
F (X0

1 , . . . , X
0
n)
)−1

n

)−1

= F (X0
1 , . . . , X

0
n) ≥

(∑n
i=1

(
X0
i

)−1

n

)−1

.

(7.93)
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The above inequality also holds for n = 2 by the assumption of inequality (7.82),
so this provides the first step for n = 3 in our induction.

Now we prove the lemma for n+ 1 if it is true for n. Similarly to the case of
Lemma Monotone Iteration in the ALM process, we make use of the operator
monotonicity of the n+ 1-variable harmonic mean, and use (7.93). Then we use
Proposition 7.24 with f(t) = t−1 and the same argument as in the ALM case,
performed using instead one BMP iteration step, yields(∑n+1

i=1

(
X l+1
i

)−1

n+ 1

)−1

≥

(∑n+1
i=1

(
X l
i

)−1

n+ 1

)−1

. (7.94)

The second case given by inequality (7.83) again can be treated similarly to
the ALM-case.

Lemma 7.26 (Decreasing Distances, M. Pálfia [64]). We have

al+1
n ≤ aln −

k

8
zne

l
n, (7.95)

in the case of (7.82), or we have (7.95) with k = 2 in the case of (7.83). In
both cases zn = 4

(n−1)n .

Proof. The situation is similar again to the ALM case. We will prove this for
the case (7.82), the second case of (7.83) is just the same with k = 2, since
we will only use that the right hand side of (7.37) holds, so we do not have to
treat the second case (7.83) separately due to (7.47). The first step is to show
the above for n = 3. By Lemma 7.19 and that the right hand side of (7.82) is
equivalent to the assumption of the lemma, we get

dE
(
0, F (X l

i , X
l
j)
)2 ≤dE(0, X l

i)
2 + d(0, X l

j)
2

2
− k

8
dE(X l

i , X
l
j)

2

dE
(
0, F2/3

(
X l
s, F (X l

i , X
l
j)
))2 ≤1

3
dE(0, X l

s)
2 +

2

3
d(0, F (X l

i , X
l
j))

2

− k

2

1

3

2

3
dE(X l

s, F (X l
i , X

l
j))

2

≤1

3
dE(0, X l

s)
2 +

2

3
d(0, F (X l

i , X
l
j))

2

≤
dE(0, X l

s)
2 + dE(0, X l

i)
2 + d(0, X l

j)
2

3

− k

8

2

3
dE(X l

i , X
l
j)

2

(7.96)

in other words the last inequality is equivalent to

dE
(
0, X l+1

s

)2 ≤ dE(0, X l
s)

2 + dE(0, X l
i)

2 + d(0, X l
j)

2

3
− k

8

2

3
dE(X l

i , X
l
j)

2,

(7.97)
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where i, j, s ∈ {1, 2, 3} and i 6= j 6= s, s 6= i. There are 3 distinct inequalities of
the above for s = 1, 2, 3. By summing these inequalities for s we get (7.95) for
n = 3 and z3 = 2

3 .
Now suppose (7.95) holds for n and that X l

i converge to a common limit
point for n. Then we have

aln ≤ a0
n −

k

8
zne

0
n (7.98)

and by taking the limit on the left hand side we get

lim
l→∞

aln = ndE
(
0, F (X0

1 , . . . , X
0
n)
)2 ≤ a0

n −
k

8
zne

0
n

dE
(
0, F (X0

1 , . . . , X
0
n)
)2 ≤ a0

n

n
− k

8

zn
n
e0
n.

(7.99)

Then set up the BMP-procedure on X0
i ∈ P(r,C); i = 1, 2 . . . , n+ 1 with

Mn(X1, . . . , Xn) := F (X1, . . . , Xn). Inequality (7.99) can be applied in any of
the iteration steps, so we get

dE
(
0, F

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))2 ≤
≤
∑n+1
j=1,j 6=i dE(0, X l

j)
2

n
− k

8

zn
n

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2.
(7.100)

Then we have to compute X l+1
i = F n

n+1

(
X l
i , F

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))
and

bound its squared distance from the zero matrix

dE

(
0, F n

n+1

(
X l
i , F

(
Z 6=i

(
X l

1, . . . , X
l
n+1

))))2

≤ 1

n+ 1
dE
(
0, X l

i

)2
+

n

n+ 1
dE
(
0, F

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))2
−k

8

1

n+ 1

n

n+ 1
dE

(
X l
i , F n

n+1

(
X l
i , F

(
Z 6=i

(
X l

1, . . . , X
l
n+1

))))2

.

(7.101)

We drop the last term, as it seems that it is hard to estimate it from below, and
substitute in using inequality (7.100), we get

dE
(
0, X l+1

i

)2 ≤ 1

n+ 1
dE
(
0, X l

i

)2
+

n

n+ 1
dE
(
0, F

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))2
≤ 1

n+ 1
dE
(
0, X l

i

)2
+

n

n+ 1

∑n
j=1,j 6=i dE(0, X l

j)
2

n
− k

8

zn
n

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2


≤
∑n+1
j=1,j 6=i dE(0, X l

j)
2

n+ 1
− k

8

zn
n+ 1

∑
1≤j<s≤n+1,j 6=i,s 6=i

dE(X l
j , X

l
s)

2.

(7.102)
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If we sum these inequalities for i we arrive at the following

n+1∑
i=1

dE
(
0, X l+1

i

)2 ≤
≤
n+1∑
i=1

∑n+1
j=1 dE(0, X l

j)
2

n+ 1
− k

8

zn
n+ 1

n+1∑
i=1

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2,

(7.103)

which is equivalent to

n+1∑
i=1

dE
(
0, X l+1

i

)2 ≤
≤
n+1∑
i=1

dE(0, X l
i)

2 − k

8

zn
n+ 1

n+1∑
i=1

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2.

(7.104)

The left hand side of the above is just al+1
n+1 and the first term on the right hand

side is aln+1. By the proof of the convergence of the ALM-process the second
term

n+1∑
i=1

∑
1≤j<s≤n+1,j 6=i,s6=i

dE(X l
j , X

l
s)

2 = (n− 1)eln+1. (7.105)

Thus zn+1 = n−1
n+1zn and also z3 = 2

3 , by solving the recursion we get

zn =
4

(n− 1)n
. (7.106)

This concludes the lemma for every n.

Lemma 7.27 (Boundedness, M. Pálfia [64]). The matrix sequences X l
i are

bounded for all n.

Proof. We have the trivial lower bound X l
i ≥ 0, since by assumption Ft(A,B) ≥

0, so we have X l
i ≥ 0 for n = 3. Now similarly to the case of the ALM-process

we assume again that the BMP-procedure converges to common limit point
denoted by F (X0

1 , . . . , X
0
n) for n and F (X0

1 , . . . , X
0
n) ≥ 0. Then again if the

sequences converge for n + 1 to a common limit F (X0
1 , . . . , X

0
n+1), then this

limit F (X0
1 , . . . , X

0
n+1) ≥ 0.

We provide the suitable upper bound similarly to the ALM case. We again
have aln+1 ≤ a0

n+1 = b so we similarly get
∥∥X l

i

∥∥ ≤ b for n + 1 if the procedure
converges to common limit for n. This finishes the proof of the lemma.

Now the last step of the proof is exactly the same as in the case of the
ALM-procedure, we just have to use the three lemmas: Lemma Monotone Iter-
ation, Decreasing Distances and Boundedness adapted for the case of the BMP
iteration.
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Notice that for matrix means we have the weighted mean procedureMt(A,B)
introduced here. By Proposition 7.13 we have that every such mean is smaller
than the weighted arithmetic mean and larger than the weighted harmonic
mean. So as a consequence of Theorem 7.23 we get that the BMP-procedure
converges for every symmetric matrix mean if we identify their weighted coun-
terparts with our weighted mean Mt(A,B).

7.5 Properties of the ALM and BMP mean

We will show that the limit point of the ALM and BMP processes, denoted
by MALM (X1, . . . , Xn) and MBMP (X1, . . . , Xn) respectively, as extensions of
symmetric matrix means, fulfill the following properties.

Theorem 7.28 (M. Pálfia [64]). If M(A,B) is a symmetric matrix mean, then
the M := MALM (X1, . . . , Xn) and M := MBMP (X1, . . . , Xn) extensions fulfill
the following properties

(I) M(X, . . . ,X) = X for every X ∈ P(r,C),

(II) M(X1, . . . , Xn) is invariant under the permutation of its variables,

(III) min(X1, . . . , Xn) ≤ M(X1, . . . , Xn) ≤ max(X1, . . . , Xn) if min and max
exist with respect to the positive definite order,

(IV) If Xi ≤ X ′i, then M(X1, . . . , Xn) ≤M(X ′1, . . . , X
′
n),

(V) M(X1, . . . , Xn) is continuous,

(VI) M(CX1C
∗, . . . , CXnC

∗) = CM(X1, . . . , Xn)C∗ for all invertible C.

Proof. The proof of each property will be based on induction. Each of them
trivially holds for n = 2 by properties of matrix means. So it remains to prove
them for n+ 1 assuming that they hold for n.

Property (I) and (II) trivially holds for n + 1 if it holds for n. We prove
property (IV). Let X0

1 , . . . , X
0
n+1 ∈ P(r,C) and X0

i ≤ (X ′i)
0 ∈ P(r,C). If we

iterate by the ALM process, it is easy to see that the order X0
i ≤ (X ′i)

0 is
preserved due to the inductional hypothesis on property (IV), so X l

i ≤ (X ′i)
l.

Taking the limits l → ∞ we get the assertion. In case of the BMP-process
the argument is similar but we have to use also that Mt(A,B) ≤ Mt(A

′, B′) if
A ≤ A′ and B ≤ B′.

Property (III) is an easy consequence of property (I) and (IV), if minimum
and maximum exist. Setting up the same iteration on the new n-tuple formed by
the minimal element we get the inequality on the left in property (III), similarly
we can obtain the inequality on the right as well.

To prove property (VI) let (X ′i)
0 = CX0

i C
∗ and set up the ALM or BMP

process on (X ′1)0, . . . , (X ′n)0 as on X0
1 , . . . , X

0
n. Property (VI) implies in the

case of ALM

CX l+1
i C∗ = CM

(
Z 6=i

(
X l

1, . . . , X
l
n+1

))
C∗ =

= M
(
Z 6=i

(
CX l

1C
∗, . . . , CX l

n+1C
∗)) .

(7.107)
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In the case of the BMP process we have similarly

CX l+1
i C∗ = CM n

n+1

(
X l
i ,M

(
Z 6=i

(
X l

1, . . . , X
l
n+1

)))
C∗ =

= M n
n+1

(
CX l

iC
∗,M

(
Z 6=i

(
CX l

1C
∗, . . . , CX l

n+1C
∗))) .

(7.108)

Applying the above recursively in every iteration step we get

CX l
iC
∗ = (X ′i)

l. (7.109)

Taking the limit l→∞ the assertion follows.
Property (V) is a consequence of properties (IV) and (VI) by Lemma 7.9.

Now we can see that the assumed properties in Definition 4.1 are fulfilled in
general by these two means as well.

We also have that the ALM and BMP procedures preserve the ordering of
functions. So we have for the ALM process the following

Proposition 7.29 (M. Pálfia [64]). If M(A,B) ≤ N(A,B) are functions satis-
fying the properties of F (A,B) in Theorem 7.16, then the same ordering is true
for the ALM limit points M(X1, . . . , Xn) and N(X1, . . . , Xn).

Proof. Again we argue by induction. The inequality

M(X1, . . . , Xn) ≤ N(X1, . . . , Xn) (7.110)

holds for n = 2 by assumption. Let us denote the matrices in the ALM iteration
steps performed with M(X1, . . . , Xn−1) and N(X1, . . . , Xn−1) on X0

1 , . . . , X
0
n ∈

P(r,C) by X l
i and (X ′i)

l respectively. Now again we have M(X1, . . . , Xn−1) ≤
N(X1, . . . , Xn−1) by the inductional hypothesis so we have X l

i ≤ (X ′i)
l. Taking

the limits we get the assertion.

A similar, although a bit different assertion holds for the BMP process.

Proposition 7.30 (M. Pálfia [64]). If Mt(A,B) ≤ Nt(A,B) are functions sat-
isfying the properties of Ft(A,B) in Theorem 7.23, then the same ordering is
true for the BMP limit points M(X1, . . . , Xn) and N(X1, . . . , Xn).

Proof. We have an inductional argument similarly to the preceding case of
the ALM process. The inequality M(A,B) ≤ N(A,B) holds for by assump-
tion since M(A,B) = M1/2(A,B) and N(A,B) = N1/2(A,B). Let us denote
the matrices in the BMP iteration steps performed with M(X1, . . . , Xn−1) and
N(X1, . . . , Xn−1) on X0

1 , . . . , X
0
n ∈ P(r,C) by X l

i and (X ′i)
l respectively. Now

again we have M(X1, . . . , Xn−1) ≤ N(X1, . . . , Xn−1) by the inductional hy-
pothesis and also Mt(A,B) ≤ Nt(A,B) so we have X l

i ≤ (X ′i)
l. Taking the

limits we get the assertion.

In the next section we will consider some convergence rate properties fulfilled
by the BMP process.
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7.6 Convergence rate of the BMP process

A nice property of the BMP process, discussed in Theorem 4.16, is its cubic
convergence rate in a small neighborhood of its limit point. This is an advantage
over the ALM process which is known to converge linearly. In this section we
will show that the BMP process generally converges cubically for every possible
matrix mean in a small neighborhood of the limit point of the process. The
proof will be similar to the one presented in [15]. In order to be able to use
such an argument we have to obtain a series expansion for the weighted mean
Mt(A,B) in the neighborhood of the identity matrix I.

We are going to use the big O notation. This means that we have X =
Y + O(εk) if and only if there exist constants ε0 < 1 and θ such that for each
0 < ε < ε0 we have ‖X − Y ‖ ≤ θεk.

Proposition 7.31 (M. Pálfia [64]). Let M(A,B) be a symmetric matrix mean
and f(t) be its corresponding normalized operator monotone function. Let f(t)
have a series expansion around I as

f(X) = I +
X − I

2
+

∞∑
k=2

bk(X − I)k. (7.111)

Then we have a series expansion for Mt(I,X) = ft(X) whenever ‖X − I‖ ≤
ε < 1 in the form

ft(X) = I + t(X − I) + 4b2t(1− t)(X − I)2 +O(ε3). (7.112)

Proof. Since Mt(A,B) is a matrix mean if the generating M(A,B) is a sym-
metric matrix mean therefore it has the following representation

Mt(A,B) = A1/2ft

(
A−1/2BA−1/2

)
A1/2 = Aft

(
A−1B

)
, (7.113)

where ft(X) is a normalized operator monotone function inX, therefore analytic
on (0,∞), hence we have the second equality as well. Since it is generally
analytic only on (0,∞), we expect (7.111) to be convergent only for ‖X − I‖ <
1. By the above representation for Mt(A,B) and the fact that M1/2(A,B) =
M(A,B) by definition, it is enough to show that the expansion in the assertion
holds for ft(X). In other words we have to consider the mean Mt(A0, B0) of
A0 = I and an arbitrary B0 = X. We also have a natural expansion in the
neighborhood of I for the inverse function as

X−1 =

∞∑
k=0

(−1)k(X − I)k, (7.114)

which is convergent for ‖X − I‖ < 1. Now in every step of the Weighted mean
process we have to compute a symmetric mean of two matrices and by the
assumption of the assertion we have ‖X − I‖ ≤ ε < 1. Without loss of generality
we may write Aj and Bj in the following forms

Aj = I + yj1(X − I) + yj2(X − I)2 +O(ε3)

Bj = I + zj1(X − I) + zj2(X − I)2 +O(ε3).
(7.115)
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Now we will make use of the above expansions to get an expansion for M(Aj , Bj)
up to the O(ε3) term as follows

M(Aj , Bj) = Ajf(A−1
j Bj) =

(
I + yj1(X − I) + yj2(X − I)2 +O(ε3)

)
f
[
A−1
j

(
I + zj1(X − I) + zj2(X − I)2 +O(ε3)

)]
=

=
(
I + yj1(X − I) + yj2(X − I)2 +O(ε3)

)
f
[(
I − yj1(X − I)+

+((yj1)2 − yj2)(X − I)2 +O(ε3)
)(

I + zj1(X − I) + zj2(X − I)2 +O(ε3)
)]

(7.116)

where we have used (7.114) to express A−1
j and (7.111) to express f(X) up to

O(ε3) terms. After some calculation and taking into account that the terms
(X − I)k with k ≥ 3 are of O(ε3), we get that

M(Aj , Bj) = I +
yj1 + zj1

2
(X − I) +

[
yj2 + zj2

2
+ b2(yj1 − z

j
1)2

]
(X − I)2 +O(ε3).

(7.117)
Note that since A0 = I and B0 = X we have y0

2 = 0 and z0
2 = 0. Hence it can

be easily proved by induction that the terms

yj2 = b2pj(y
0
1 , z

0
1 , t)

zj2 = b2qj(y
0
1 , z

0
1 , t),

(7.118)

where pj and qj are functions which do not depend on b2. Also since ft(X)
is an analytic function due to Kubo-Ando theory, therefore the limits p =
limj→∞ pj = limj→∞ qj and this limit function is also independent of b2.

Now since the weighted geometric mean

Gt(A,B) = A1/2
(
A−1/2BA−1/2

)t
A1/2 = A

(
A−1B

)t
(7.119)

is an affine mean, therefore the Weighted mean process gives back Gt(A,B) for
every t ∈ [0, 1] and A,B ∈ P(r,C). In other words in this case if we expand the
function Xt into a Taylor series around I we get

Gt(I,X) = Xt = I + t(X − I)− t(1− t)
2

(X − I)2 +O(ε3) (7.120)

and this equation for t = 1/2 gives that b2 = −1/8. Since Gt(A,B) is an affine
mean and p does not explicitly depend on b2 we get p = 4t(1 − t). Similar
consideration can be applied in the case of the linear term t(X − I).

The above proposition tells us that no matter how we choose the symmetric
matrix mean M(A,B), the series expansion of Mt(A,B) around I will have
similar structure up to the (X − I)2 term:

Mt(A,B) = (1− t)A+ tB + 4b2t(1− t)A1/2
(
A−1/2BA−1/2 − I

)2

A1/2 + . . .

(7.121)
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Actually b2 ≤ 0 for every matrix mean since the corresponding operator mono-
tone function is concave. It is not hard to prove using Proposition 7.15 that
−1/2 ≤ b2 ≤ 0 for every matrix mean.

A remarkable consequence of the above series expansion is that the BMP
procedure converges at least cubically if the matrices are sufficiently close to
each other for all symmetric matrix means.

To prove this assertion we will prove the following more precisely formulated

Theorem 7.32 (M. Pálfia [64]). Let 0 < ε < 1, K,X0
i ∈ P(r,C), i = 1, . . . , n,

and Ei = K−1X0
i − I. Set up the the BMP process on the X0

i with a symmetric
matrix mean M(A,B) which has series expansion given as in Proposition 7.31.
Now suppose that ‖Ei‖ ≤ ε for all i. Then for the matrices X1

i the following
hold.

C1: We have
K−1X1

i − I = Tn +O(ε3), (7.122)

where

Tn =
1

n

n∑
j=1

Ej +
2b2
n2

n∑
i,j=1

(Ei − Ej)2. (7.123)

C2: There are positive constants θ, σ and ε̄ < 1 (all of which may depend on
n) such that for all ε ≤ ε̄, ∥∥K−1

1 X1
i − I

∥∥ ≤ θε3 (7.124)

for a suitable matrix K1 satisfying
∥∥K−1K1 − I

∥∥ ≤ σε.
C3: The BMP iteration in Definition 4.5 converges at least cubically.

C4: We have
K−1

1 MBMP (X0
1 , . . . , X

0
n)− I = O(ε3), (7.125)

where MBMP (X0
1 , . . . , X

0
n) denotes the limit point of the BMP-process in

Definition 4.5.

Proof. Let A,B ∈ P(r,C) such that K−1A = I + F1 and K−1B = I + F2 and
‖F1‖ ≤ δ, ‖F2‖ ≤ δ, 0 < δ < 1. Then we have by the series expansion in
Proposition 7.31 that

K−1Mt(A,B) = K−1Aft(A
−1B) = (I + F1)ft

(
(I + F1)−1(I + F2)

)
= (I + F1)ft

(
(I − F1 + F 2

1 +O(δ3))(I + F2)
)

= (I + F1)ft
(
I + F2 − F1 − F1F2 + F 2

1 +O(δ3)
)

= I + (1− t)F1 + tF2 + 4b2t(t− 1)(F2 − F1)2 +O(δ3).

(7.126)

Now we will prove the theorem by induction on n. Let Cin denote the assertion
Ci of the theorem (i = 1, 2, 3, 4) for a given value of n. Then we show

(1) C12 holds,
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(2) C1n ⇒ C2n,

(3) C2n ⇒ C3n, C4n,

(4) C4n ⇒ C1n+1.

(1): This is equation (7.126) for t = 1/2.
(2): It is obvious that Tn = O(ε), so choosing K1 = K(I + Tn) we have

X1
i = K(I +Tn +O(ε3)) = K1(I + (I +Tn)−1O(ε3)) = K1(I +O(ε3)). (7.127)

Using explicit constants in the big-O estimates, we get∥∥K−1
1 X1

i − I
∥∥ ≤ θε3,∥∥K−1K1 − I

∥∥ ≤ σε (7.128)

for some constants θ, σ.
(3): Suppose now that ε is small enough to have θε3 ≤ ε and let ε1 =

θε3. Now we apply C2 with starting matrices X1
i , with ε1 replacing ε and K1

replacing K, getting∥∥K−1
2 X1

i − I
∥∥ ≤ θε31,∥∥K−1

1 K2 − I
∥∥ ≤ σε1. (7.129)

Repeating this for all steps of the iterative process, we get for all l = 0, 1, . . .
that ∥∥K−1

l X l
i − I

∥∥ ≤ θε3l−1 = εl,
∥∥K−1

l Kl+1 − I
∥∥ ≤ σεl (7.130)

with εl+1 = θε3l .
Let us introduce the notation

d(X,Y ) =
∥∥X−1Y − I

∥∥ (7.131)

for any X,Y ∈ P(r,C). Notice that

‖X − Y ‖ ≤ ‖X‖
∥∥X−1Y − I

∥∥ ≤ ‖X‖ d(X,Y ). (7.132)

Similarly we also have

d(X,Z) =
∥∥(X−1Y − I)(Y −1Z − I) +X−1Y − I + Y −1Z − I

∥∥
≤ d(X,Y )d(Y,Z) + d(X,Y ) + d(Y, Z).

(7.133)

Using the introduced notation we have according to (7.130) that

d(Kl, X
l
i) ≤ εl, d(Kl,Kl+1) ≤ σεl. (7.134)

Now we will show by induction that, for ε smaller than a fixed constant, it
follows that

d(Kl,Kl+t) ≤
(

2− 1

2t

)
σεl. (7.135)

First of all, for all t ≥ 1

εl+t = θ
3t−1

2 ε3
t

, (7.136)
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which, for ε smaller than min(1/8, θ−1), implies

εl+t
εl
≤ ε

3t−1
2

l ≤ 1

2t+2
. (7.137)

Let us suppose that ε ≤ σ−1. Then by (7.133) we have

d(Kl,Kl+t+1) ≤d(Kl,Kl+t)d(Kl+t,Kl+t+1)

+ d(Kl,Kl+t) + d(Kl+t,Kl+t+1)

≤
(

2− 1

2t

)
σεl + σεl

(
σεl+t −

εl+t
εl

)
≤
(

2− 1

2t

)
σεl + σεl

1

2t+1
=

(
2− 1

2t+1

)
σεl.

(7.138)

So we have for each t ≤ 0 that

‖Kt −K‖ ≤ ‖K‖
∥∥K−1Kt − I

∥∥ ≤ 2σ ‖K‖ ε, (7.139)

which yields ‖Kt‖ ≤ 2 ‖K‖ for all t. By a similar argument we have

‖Kl+t −Kl‖ ≤ ‖Kl‖ d(Kl+t,Kl) ≤ 2σ ‖K‖ εl. (7.140)

What follows here from the bounds already imposed on ε, the sequence εl tends
monotonically to zero with cubic convergence rate, thus Kl is a Cauchy sequence
as well and therefore converges. Let us denote its limit point with K∗. Kl also
converges cubically since if we let t→∞ in the above inequality, we get

‖K∗ −Kl‖ ≤ 2σ ‖K‖ εl. (7.141)

Now using the relations in (7.130), we get∥∥X l
i −K∗

∥∥ ≤ ∥∥X l
i −Kl

∥∥+ ‖Kl −K∗‖
≤ 2 ‖K‖ d(Kl, X

l
i) + 2σ ‖K‖ εl

≤ (2σ + 2) ‖K‖ εl,
(7.142)

which means that X l
i converges to K∗ with cubic convergence rate, so C3 is

proved. By (7.130), (7.133) and (7.135) we get that

d(K1, X
t
i ) ≤ d(K1,Kt)d(Kt, X

t
i ) + d(K1,Kt) + d(Kt, X

t
i )

≤ 2σε1εt + 2σε1 + εt ≤ (4σ + 1)ε1 = O(ε3),
(7.143)

which is C4.
(4): Using C4n and (7.126) with F1 = En+1, F2 = K−1MBMP (X0

1 , . . . , X
0
n) =

Tn +O(ε3), δ = 2nε, we have

K−1X1
n+1 =K−1

(
M n

n+1
(X0

n+1,MBMP (X0
1 , . . . , X

0
n))
)

=I +
1

n+ 1
En+1 +

n

n+ 1
Tn

+
4b2n

(n+ 1)2

(
En+1 −

1

n

n∑
i=1

Ei

)2

+O(ε3).

(7.144)
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Notice that

Tn =
1

n
Sn + 4b2

(n− 1)Qn − Pn
n2

(7.145)

where Sn =
∑n
i=1Ei, Qn =

∑n
i=1E

2
i , Pn =

∑n
i,j=1,i6=j EiEj . We also have

S2
n = Pn + Qn and Sn+1 = Sn + En+1, Qn+1 = Qn + E2

n+1, Pn+1 = Pn +
En+1Sn + SnEn+1, which yields according to the above that

K−1X1
n+1 = I +

1

n+ 1
Sn+1 +

4b2n

(n+ 1)2
Qn+1 −

4b2
2(n+ 1)2

Pn+1 +O(ε3)

= I + Tn+1 +O(ε3).

(7.146)

Since this expression is symmetric with respect to Ei, it follows that it is the
same for all X1

i .

The above proof is almost the same as the one presented for a similar theorem
in [15] for the geometric mean. The major differences are in the series expansions
for the weighted mean Mt(A,B) and the limit point MBMP (X1, . . . , Xn).

8 Practical Applications

Calculation of means naturally appear in practical applications when smoothing
of multisampled data is needed. The arithmetic mean plays a central role in
statistics and the arithmetic mean of matrices appears in multivariate statistics.
Probability theory and statistics also benefits from certain inequalities between
classical means. For instance the inequality between the multi-variable forms of
the arithmetic and the square mean can be used to prove that a certain random
variable that has vanishing variance must have Dirac-delta distribution, i. e.
the support of its distribution function is a point.

We will consider two areas of possible practical applications. One of them
is the problem of calculating averages of points in a complete metric space, the
other is calculating averages of positive definite matrices, which itself in a way
is a subcase of the former problem.

8.1 Averaging in complete metric spaces

In many applications, such as the study of plate tectonics [70] or sequence-
dependent continuum modeling of DNA [45], the experimental data is given as
a sequence of three dimensional orentation data. This set of data is usually
thought of as three dimensional orthogonal matrices, i. e. elements of the
group SO(3). This group is a connected, simply connected compact Lie group,
therefore also a Riemannian manifold with a bi-invariant metric. The curvature
of the manifold in the case of SO(3) is constant, its value is 1/4 while in the
higher dimensional cases it varies over the manifold. As we have mentioned
before, by Proposition 5.12 and 5.13 of Ohta we already know that SO(r) is a
complete, locally k-convex metric space.
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To do averaging in SO(r), one can use the fact that this manifold is au-
tomatically embended into the space of squared complex matrices. So if we
have Qi ∈ SO(r) for i = 1, . . . , n, we may take the arithmetic mean of Qi,
although then we will end up with a matrix that is not an element of SO(r).
One possibility is to orthogonally project back to the manifold SO(r). This
method is widely used although has several major drawbacks. For instance we
may end up with a projected element of SO(r) that is not in the convex hull of
the initial data with respect to the Riemannian structure of SO(r). Moreover if
we consider this method on P(r,C) with Riemannian metric (4.2), we may end
up with points which are on the boundary of the cone P(r,C), although any
boundary point is of infinite Riemannian distance from any inner points of the
cone P(r,C). This is a serious problem which is discussed in [23, 47]. However
if we consider the Iterative mean on SO(r) we can eliminate this problem by
using the Iterative mean, if the initial points are in a small enough metric ball
according to Proposition 5.12.

The other widely used mean is the center of mass defined by (5.27). Theo-
rem 5.7 ensures the existence and uniqueness of the center of mass in a small
enough metric ball. Then according to Proposition 4.10 the center of mass can
be calculated as the solution of the equation

n∑
i=1

logX(Qi) = 0. (8.1)

This is a nontrivial and often nonlinear equation. A gradient or newton method
may be applied for finding the solution of it, although one must ensure the
convergence of the methods. A gradient method combined with a certain line
search algorithm ensures the global convergence, although the line search rule
significantly increases the computational time. One may use the Iterative mean
to approximate the center of mass, since the distance of the two points are
generally bounded due to Corollary 5.9. Numerical experiments suggests that
the centroid is very close to the Iterative mean, so we can speed up the gradient
method with line search rule by starting from the Iterative mean, i. e. we
approximate the Iterative mean sufficiently by its defining iteration, then start
the gradient method from the approximating point. This method can be applied
in the case of the geometric mean as well, since P(r,C) is a nonpositively curved
Riemannian manifold with the trace metric (4.2).

8.2 Averaging elements of P(r,C)

Averaging points in the nonpositively curved Riemannian manifold P(r,C) can
be regarded as calculating matrix means. In 1980 Kubo and Ando formulated
the axiomatic theory of 2-variable matrix means, see Section 3 again. Since
then several researchers were trying to extend the theory to several variables.
Here we have given three different axiomatic extensions, the Iterative mean, the
ALM mean and the BMP mean. The properties considered by Kubo and Ando
carries over to these n-variable extensions nicely. This provides us with matrix
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inequalities between n-variable means, which can possibly be used in several
situations. Some of these means can be used in the future for certain averaging
problems where the arithmetic mean does not fit well to the problem. Some of
these situations have already been mentioned earlier.
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9 Summary

Means of two positive matrices were characterized by Kubo and Ando in 1980.
Their theory was based on the classical Loewner theory of operator monotone
functions. They showed that every two-variable matrix mean is isomorphic to a
normalized operator monotone function. Since then the theory has found many
applications in quantum information theory and operator theory.

However since it has been an open problem to extend the axiomatic theory
to three or more variables. The arithmetic and harmonic means were trivial
in several variables even for positive definite matrices, but no other matrix
mean can be easily extended to several variables. The first ideas were given
for the logarithmic mean by Carson [19]. Then Horwitz [30] considered a so
called symmetrization method, which were considered by Ando, Li and Mathias
(the ALM process) [5] as well to extend the geometric mean to several variables.
Later the convergence of this process were proved in nonpositively curved metric
spaces by Lawson and Lim [38]. Later other geometric means were proposed,
for instance the Riemannian mean of Moakher [47] and the Bini-Meini-Poloni
mean which is again a sort of symmetrization process (BMP-process) [15].

Even after these successes it has been not known whether these procedures
can be applied to all matrix means. We will give a general theory here which
solves this problem. The whole theory has a geometrical picture which makes it
possibe to consider the theory in complete metric spaces with a certain curvature
bound. Therefore the first results will be presented in this metric geometric
setting. We will denote explicitly which theorems and definitions were given
and proved by the author.

9.1 Means in Complete k-convex Metric Spaces

The results in this section form the first thesis group. The following definition
of k-convexity is due to Ohta in [53]. We establish our results for spaces with
such properties below.

Definition 9.1. Let k ∈ (0, 2].

• An open set U in a geodesic metric space (X, d) is called a Ck-domain if
for any three points x, y, z, any geodesic γ : [0, 1] 7→ X between x, y and
for all t ∈ [0, 1] we have

d(z, γ(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − k

2
t(1− t)d(x, y)2. (9.1)

• A geodesic metric space (X, d) is k-convex if it is itself a Ck − domain.

• A geodesic metric space (X, d) is locally k-convex if every point in X is
contained in a Ck-domain.

If the inequality (9.1) holds for t = 1/2 then it holds for all t ∈ [0, 1]. A
k-convex metric space becomes a CAT (0) space if the above inequality holds
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for k = 2. In this case the space is said to have nonpositive curvature in the
sense of Alexandrov, in other words the semiparallelogram law holds.

The following definition gives a process, which can be applied to extend
means to several variables.

Definition 9.2 (Iterative process, M. Pálfia [60]). Let Q0
1, . . . , Q

0
n be points in

a uniquely geodesic metric space X and π = {π0, π1, . . .} be an infinite sequence
of permutations, where each πi is a permutation of the letters {1, . . . , n}. With
respect to the infinite sequence of permutations π let

Ql+1
i =

{
Qlπl(i)]Q

l
πl(i+1) if 1 ≤ i < n,

Qlπl(n)]Q
l
πl(1) else.

(9.2)

The above procedure yields a sequence of n-tuple of points.

The following result ensures the convergence of the process in general.

Theorem 9.1 (Iterative mean, M. Pálfia [60]). Let (X, d) be a complete k-
convex geodesic metric space. Let Q0

1, . . . , Q
0
n be points in the metric space X.

Let us set up the iteration in Definition 9.2 on these points in X with respect to
an infinite sequence of permutations π = {π0, π1, . . .}. Then the sequences Qli
converge to a common limit point.

The rate of convergence is linear due to the following

Theorem 9.2 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q0

1, . . . , Q
0
n be points in the metric space X. Let us set up

the iteration in Definition 9.2 on these points in X. Let R denote the common
limit point of these sequences. Then

al+1(R)

al(R)
≤ 1− k

2n2
, (9.3)

so the points Qli are converging to R linearly.

The heuristic function Idealmapping defined by Algorithm 1 gives us a tool
to speed up the rate of convergence to the common limit point. It must be noted
however that the limit point depends on the infinite sequence of permutations
π in Definition 9.2, so therefore it is denoted by Rπ.

The following theorems partially answer a question proposed by Bhatia and
Holbrook in [13] that whether the center of mass is the same point as the limit
of certain symmetrization procedures.

Corollary 9.3 (M. Pálfia [60]). Let (X, d) be a complete k-convex geodesic
metric space. Let Q1, . . . , Qn be points in the metric space X. Then the center
of mass

Y = arg min
x∈X

n∑
i=1

d (x,Qi)
2

(9.4)
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and the limit point Rπ of the procedure in Theorem 9.1 set up on the points
Q1, . . . , Qn fulfill the following inequality

d(Rπ, Y ) ≤

√∑n
i=1 d (Y,Qi)

2 − k
8

∑∞
l=1 el

n
. (9.5)

Proposition 9.4 (M. Pálfia [60]). If X is a Euclidean space then the limit point
Rπ of the procedure in Theorem 9.1 is the center of mass of the starting points
for every possible infinite sequence of permutations π.

The limit point Rπ of the procedure depends on the chosen infinite sequence
π. If (9.1) turns into an equality, as in the case of a single geodesic segment or
Euclidean space, then the possibly different limit points depending on π of the
procedure will collapse onto one unique point, the center of mass.

Theorem 9.1 gives a mean for the special orthogonal group as well which
is also an actively studied manifold in terms of averaging [46], [48]. SO(n) is
locally k-convex due to propositions in [53]. These propositions due to Ohta tells
us how to translate the requirement of k-convexity to the language of curvature.
It turns out that an upper curvature bound suffices. So this mean exists not
only in nonpositively curved spaces as the ALM mean does which was shown
by Lawson and Lim [38], but also in positively curved metric spaces as well.

In the next section we solve the problem, that whether the arithmetic, har-
monic and geometric means are the only matrix means which are midpoint
operations on certain manifolds.

9.2 Symmetric Matrix Means as Metric Midpoints

This section contains the second thesis group. Here P(n,C) denotes the convex
cone of positive definite n-by-n matrices over the complex field C and similarly
H(n,C) denotes the vector space of hermitian n-by-n matrices over C. We begin
with general theorems for affinely connected manifolds.

Theorem 9.5 (M. Pálfia [56]). Let M be an affinely connected smooth mani-
fold diffeomorphically embedded into a vector space V . Suppose that the midpoint
map m(p, q) = expp(1/2 logp(q)) is known in every normal neighborhood where
the exponential map expp(X) is a diffeomorphism. Then in these normal neigh-
borhoods the inverse of the exponential map logp(q) can be fully reconstructed
from the midpoint map in the form

logp(q) = lim
n→∞

m(p, q)◦n − p
1

2n

, (9.6)

where we use the notation m(p, q)◦n ≡ m
(
p,m(p, q)◦(n−1)

)
.

By the Kubo-Ando theory of 2-variable matrix means it is known that every
matrix mean can be written in the form

M(A,B) = A1/2f
(
A−1/2BA−1/2

)
A1/2, (9.7)
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where f(t) is a normalized operator monotone function. For symmetric means,
we have f(t) = tf(1/t) which implies that f ′(1) = 1/2. Recall from Loewner
theory [9] the integral characterization that an operator monotone function f(t),
which is defined over the interval (0,∞), possesses:

f(t) = α+ βt+

∫ ∞
0

(
λ

λ2 + 1
− 1

λ+ t

)
dµ(λ), (9.8)

where α is a real number, β ≥ 0 and µ is a positive measure on (0,∞) such that∫ ∞
0

1

λ2 + 1
dµ(λ) <∞. (9.9)

We are interested in finding all possible symmetric matrix means which are
also geodesic midpoint operations on smooth manifolds. We call such a matrix
mean affine [64]:

Definition 9.3 (Affine matrix mean, M. Pálfia [56]). An affine matrix mean
M : W 2 7→W is a symmetric matrix mean which is at the same time a geodesic
midpoint operation M(A,B) = expA(1/2 logA(B)) on a smooth manifold W ⊇
P(n,C) equipped with an affine connection, where B is assumed to be in the
injectivity radius of the exponential map expA(x) of the connection given at the
point A. The mapping logA(x) is just the inverse of the exponential map at the
point A ∈W .

The following assertion shows that if a matrix mean is affine then the expo-
nential map of the corresponding smooth manifold has a special structure. We
will use similarly the notation M(A,B)◦n = M

(
A,M(A,B)◦(n−1)

)
as before.

Theorem 9.6 (M. Pálfia [56]). Let M(A,B) be a symmetric matrix mean.
Then

lim
n→∞

M(A,B)◦n −A
1

2n

= A1/2 logI

(
A−1/2BA−1/2

)
A1/2 (9.10)

where the limit exists and is uniform for all A,B ∈ P(n,C) and logI(t) is an
operator monotone function on the interval (0,∞).

As a consequence of the above we conclude the following

Proposition 9.7 (M. Pálfia [56]). If a symmetric matrix mean M(A,B) is an
affine mean, then the exponential map and its inverse, the logarithm map are of
the following forms

expp(X) = p1/2 expI

(
p−1/2Xp−1/2

)
p1/2

logp(X) = p1/2 logI

(
p−1/2Xp−1/2

)
p1/2

(9.11)

for p ∈ P(n,C), where expI(X) and logI(X) are analytic functions such that
expI : H(n,C) 7→ P(n,C) and logI(X) is its inverse and log′I(I) = I, exp′I(0) =
I, logI(I) = 0, expI(0) = I.
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After investigating the properties of the possible affine connections that can
occur we derive the main result of the section.

Theorem 9.8 (M. Pálfia [56]). All affine matrix means M(X,Y ) are of the
form

M(X,Y ) =

X
1/2

[
I+(X−1/2Y X−1/2)

1−κ

2

] 1
1−κ

X1/2 if κ 6= 1,

X1/2
(
X−1/2Y X−1/2

)1/2
X1/2 if κ = 1,

(9.12)

where 0 ≤ κ ≤ 2. The symmetric affine connections corresponding to these
means are

∇XpYp = DY [p][Xp]−
κ

2

(
Xpp

−1Yp + Ypp
−1Xp

)
. (9.13)

These connections are only metrizable (Riemannian) if and only if κ = 0, 1, 2,
in which case we get back the arithmetic, geometric and harmonic means re-
spectively.

We can see due to the above result, that generally we cannot treat the exten-
sion problem of matrix means to several variables as a purely metric geometric
problem. Although some of the geometric ideas can be applied somehow. The
following sections are all based around this idea. This is the longest and possi-
bly most complicated part of the thesis. The results here can be found in the
section ”Extensions of Matrix Means without Metric Structures”.

9.3 Iterative Mean for all Matrix Means

In general our goal is to construct several variable functions with the following
properties. Most of these properties were considered by Ando, Li and Mathias
in [5] and also by Petz and Temesi [68].

Definition 9.4 (Multivariable Matrix Mean). Let M : P(r,C)n 7→ P(r,C).
Then M is called a matrix mean if the following conditions hold

1. M(X, . . . ,X) = X for every P(r,C),

2. M(X1, . . . , Xn) is invariant under the permutation of its variables,

3. min(X1, . . . , Xn) ≤ M(X1, . . . , Xn) ≤ max(X1, . . . , Xn) if min and max
exist with respect to the positive definite order,

4. If Xi ≤ X ′i, then M(X1, . . . , Xn) ≤M(X ′1, . . . , X
′
n),

5. M(X1, . . . , Xn) is continuous,

6. CM(X1, . . . , Xn)C∗ ≤M(CX1C
∗, . . . , CXnC

∗).

The next algorithm is the extension of the Iterative mean for metric spaces
to the matrix mean setting.

The next result is the first general result which gives a solution to the long
standing problem of axiomatic extension of 2-variable matrix means.
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Algorithm 3 Iterative extension of a 2-variable matrix mean

1: Data: X = (X1, . . . , Xn) ∈ P(r,C)n; a 2-variable matrix mean M : P(r,C)×
P(r,C)→ P(r,C).

2: Initialization: X0
i := Xi, i = 1, . . . , n.

3: for k = 0, 1, . . . do
4: Choose a directed graph Gk with n vertices labelled from 1 to n and n

edges labelled from 1 to n, such that every vertex has exactly two edges
connected to it.

5: for i = 1, . . . , n do
6: Xk+1

i := M(Xk
ji
, Xk

li
), where ji is the tail vertex and li the head vertex

of edge i in Gk.
7: end for
8: end for

Theorem 9.9 (M. Pálfia [54]). Let the matrix mean M in Algorithm 3 satisfy
M(A,B) ≤ A+B

2 for all A,B ∈ P(r,C). Then the n sequences (Xk
i )k≥0, i =

1, . . . , n, generated by Algorithm 3 converge and have the same limit point.

These limit points generally seems to be different, they depend on the graphs
Gk chosen in every iteration step k, similarly to the metric space case. Therefore
we also introduce the following notation in order to express this dependence on
the sequence of graphs. Let us denote the infinite sequence of graphs with

G =
{
G0, G1, . . .

}
. (9.14)

With this notation from now on we denote the common limit point of the se-
quences in Theorem 9.9 as MG(X1, . . . , Xn) to express the dependence of the
limit point on the sequence of graphs G.

The limit points clearly provides us with n-variable extensions that possess
the required properties.

Proposition 9.10 (M. Pálfia [54]). The limit point MG(X1, . . . , Xn) of the
matrix sequences given in Algorithm 3 satisfies 1., 3. and 4. in Definition 9.4
with respect to an infinite sequence of graphs G.

Proposition 9.11 (M. Pálfia [54]). If M(A,B) ≤ N(A,B) ≤ (A + B)/2 are
matrix means, then the same ordering is true for the induced limit points
MG(X1, . . . , Xn) and NG(X1, . . . , Xn) of the matrix sequences given in Algo-
rithm 3 with respect to an infinite sequence of graphs G.

Proposition 9.12 (M. Pálfia [54]). The limit point MG(X1, . . . , Xn) of the
matrix sequences given in Algorithm 3 satisfies property 6. in Definition 9.4.

Proposition 9.13 (M. Pálfia [54]). The limit point MG(X1, . . . , Xn) of the
matrix sequences given in Algorithm 3 is a continuous function in its X1, . . . , Xn

variables.
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During the proof of the last theorem the author also carried out a notable
generally applicable result.

Theorem 9.14 (M. Pálfia [64]). Let F : P(r,C)n 7→ P(r,C) which satisfies
properties

1. if Xi ≤ X ′i for all i, then F (X1, . . . , Xn) ≤ F (X ′1, . . . , X
′
n),

2. F (cX1, . . . , cXn) = cF (X1, . . . , Xn) for real c > 0.

Then F is continuous.

9.4 Weighted 2-variable Matrix Means

Kubo-Ando theory does not give us any hint on how to find the weighted 2-
variable versions of a symmetric matrix mean. Here we provide a suitable pro-
cess that defines us a weighted 2-variable matrix mean corresponding to every
symmetric one.

Definition 9.5 (Weighted mean process, M. Pálfia [64]). Let M(·, ·) be a sym-
metric matrix mean, A,B ∈ P(r,C) and t ∈ [0, 1]. Let a0 = 0 and b0 = 1,
A0 = A and B0 = B. Define an, bn and An, Bn recursively by the following
procedure for all n = 0, 1, 2, . . . :

if an = t then
an+1 = an and bn+1 = an, An+1 = An and Bn+1 = An

else if bn = t then
an+1 = bn and bn+1 = bn, An+1 = Bn and Bn+1 = Bn

else if an+bn
2 ≤ t then

an+1 = an+bn
2 and bn+1 = bn, An+1 = M(An, Bn) and Bn+1 = Bn

else
bn+1 = an+bn

2 and an+1 = an, Bn+1 = M(An, Bn) and An+1 = An
end if

According to the above an+1, bn+1 and An+1, Bn+1 are clearly defined with
respect to an, bn and An, Bn recursively.

This algorithm may also be regarded as a kind of binary search with recur-
rence relation:

if t = t1+t2
2 then

Mt(A,B) = M (Mt1(A,B),Mt2(A,B))
end if

Theorem 9.15 (M. Pálfia [64]). The sequences An and Bn given in Definition
9.5 are convergent and have the same limit point.

Definition 9.6 (Weighted mean, M. Pálfia [64]). The common limit point
of An, Bn in Theorem 9.15 will be denoted by Mt(A,B) and from now on is
considered as the corresponding weighted mean to a symmetric matrix mean
M(·, ·).
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The following results will give us the nice porperties which a weighted matrix
mean should possess.

Proposition 9.16 (M. Pálfia [64]). Mt(A,B) yields the correct corresponding
weighted means in the case of the arithmetic, geometric, harmonic means.

The above is a consequence of the affine geodesy of the corresponding man-
ifolds mentioned above. There are further important properties which are ful-
filled by Mt(A,B):

Proposition 9.17 (M. Pálfia [64]). Mt(A,B) for A,B ∈ P(r,C) and t ∈ [0, 1]
fulfills the following properties

(i’) Mt(I, I) = I,

(ii’) if A ≤ A′ and B ≤ B′, then Mt(A,B) ≤Mt(A
′, B′),

(iii’) CMt(A,B)C ≤Mt(CAC,CBC),

(iv’) if An ↓ A and Bn ↓ B then Mt(An, Bn) ↓Mt(A,B),

(v’) if N(A,B) ≤M(A,B) then Nt(A,B) ≤Mt(A,B),

(vi’) M1/2(A,B) = M(A,B),

(vii’) Mt(A,B) is continuous in t,

Corollary 9.18 (M. Pálfia [64]). For every symmetric matrix mean M(A,B)
there is a corresponding one parameter family of weighted means Mt(A,B) for
t ∈ [0, 1]. Let f(x) be the normalized operator monotone function corresponding
to M(A,B). Then similarly we have a one parameter family of normalized
operator monotone functions ft(x) corresponding to Mt(A,B). The family ft(x)
is continuous in t, and f0(x) = 1 and f1(x) = x are the two extremal points, so
ft(x) interpolates between these two points.

Based on this phenomenon we can conclude the following

Proposition 9.19 (M. Pálfia [64]). Let M(A,B) be a symmetric matrix mean.
Then (

(1− t)A−1 + tB−1
)−1 ≤Mt(A,B) ≤ (1− t)A+ tB, (9.15)

where Mt(A,B) is the weighted version of M(A,B).

We are going to use the big O notation. This means that we have X =
Y + O(εk) if and only if there exist constants ε0 < 1 and θ such that for each
0 < ε < ε0 we have ‖X − Y ‖ ≤ θεk.

Proposition 9.20 (M. Pálfia [64]). Let M(A,B) be a symmetric matrix mean
and f(t) be its corresponding normalized operator monotone function. Let f(t)
have a series expansion around I as

f(X) = I +
X − I

2
+

∞∑
k=2

bk(X − I)k. (9.16)
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Then we have a series expansion for Mt(I,X) = ft(X) whenever ‖X − I‖ ≤
ε < 1 in the form

ft(X) = I + t(X − I) + 4b2t(1− t)(X − I)2 +O(ε3). (9.17)

This important result will ultimately lead us to the cubic convergence of the
BMP-process later.

9.5 Ando-Li-Mathias Procedure for all Matrix Means

Here in this section we will give an affirmative answer to the conjecture for-
mulated by Petz and Temesi in [68, 69] that the ALM-process converges for all
matrix means. The convergence of this process for the geometric mean were
proved by Ando, Li and Mathias [5] and later by Petz and Temesi [68]. The last
two were also able to prove the convergence of the process for orderable tuples.
A general proof however was out of reach at that time.

Definition 9.7 (ALM iteration). Let X = (X0
1 , . . . , X

0
n) where X0

i ∈ P(r,C)
and define the mapping M(X1, . . . , Xn) inductively as follows. If n = 2 assume
that M(X1, X2) is already given. For general n > 2 assume that M(X1, . . . ,
Xn−1) is already defined. Then using M(X1, . . . , Xn−1), set up the iteration

X l+1
i = M

(
Z 6=i

(
X l

1, . . . , X
l
n

))
, (9.18)

where Z 6=i(X
l
1, . . . , X

l
n) = X l

1, . . . , X
l
i−1, X

l
i+1, . . . , X

l
n. If the sequences X l

i con-
verge to a common limit point for every i, then define

lim
l→∞

X l
i = M(X0

1 , . . . , X
0
n). (9.19)

Theorem 9.21 (M. Pálfia [64]). Let F : P(r,C)2 7→ P(r,C) and suppose that
F (A,B) fulfills one of the inequalities below:(

A−1 +B−1

2

)−1

≤ F (A,B) ≤
[
A2 +B2

2
− k

8
(A−B)2

]1/2

(9.20)

for a k ∈ (0, 2], or

F (A,B) ≤ A+B

2
. (9.21)

Then in Definition 9.7 starting with M(A,B) := F (A,B), M(X1, . . . , Xn) exists
for all n, in other words the sequences converge to a common limit point for all
n.

The next section concludes a similar result for the BMP process.
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9.6 Bini-Meini-Poloni Procedure for all Matrix Means

This result is similar to the above one and also gives us an axiomatic extension
of 2-variable matrix means in general. This process were considered by Bini,
Meini and Poloni in [15]. They were only able to prove the convergence of this
process for the geometric mean. Here we prove it in full generality.

Definition 9.8 (BMP iteration). Let X = (X0
1 , . . . , X

0
n) where X0

i ∈ P(r,C)
and define the mapping M(X1, . . . , Xn) inductively as follows. If n = 2 assume
that Mt(X1, X2) is already given. For general n > 2 assume that M(X1, . . . ,
Xn−1) is already defined. Then using M(X1, . . . , Xn−1), set up the iteration

X l+1
i = Mn−1

n

(
X l
i ,M

(
Z 6=i

(
X l

1, . . . , X
l
n

)))
, (9.22)

where Z 6=i(X
l
1, . . . , X

l
n) = X l

1, . . . , X
l
i−1, X

l
i+1, . . . , X

l
n. If the sequences X l

i con-
verge to a common limit point for every i, then define

lim
l→∞

X l
i = M(X0

1 , . . . , X
0
n). (9.23)

Theorem 9.22 (M. Pálfia [64]). Let F : [0, 1]×P(r,C)2 7→ P(r,C) and suppose
that Ft(A,B) fulfills one of the inequalities below:[

(1− t)A−1 + tB−1
]−1 ≤ Ft(A,B) ≤

≤
[
(1− t)A2 + tB2 − k

2
t(1− t)(A−B)2

]1/2 (9.24)

for a k ∈ (0, 2] and every t ∈ [0, 1], or

Ft(A,B) ≤ (1− t)A+ tB, (9.25)

for every t ∈ [0, 1]. Then in Definition 9.8 starting with Mt(A,B) := Ft(A,B),
M(X1, . . . , Xn) exists for all n, in other words the sequences converge to a
common limit point for all n.

Proposition 9.20 tells us that no matter how we choose the symmetric matrix
mean M(A,B), the series expansion of Mt(A,B) around I will have similar
structure up to the (X − I)2 term:

Mt(A,B) = (1− t)A+ tB + 4b2t(1− t)A1/2
(
A−1/2BA−1/2 − I

)2

A1/2 + . . .

(9.26)
Actually b2 ≤ 0 for every matrix mean since the corresponding operator mono-
tone function is concave.

A remarkable consequence of the above series expansion is that the BMP
procedure converges at least cubically if the matrices are sufficiently close to
each other for all symmetric matrix means. This was proved by Bini, Meini and
Poloni [15] for the geometric mean and this result was a major improvement
over the ALM mean which were known to converge only linearly.

To prove this assertion we will prove the following more precisely formulated
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Theorem 9.23 (M. Pálfia [64]). Let 0 < ε < 1, K,X0
i ∈ P(r,C), i = 1, . . . , n,

and Ei = K−1X0
i − I. Set up the the BMP process on the X0

i with a symmetric
matrix mean M(A,B) which has series expansion given as in Proposition 9.20.
Now suppose that ‖Ei‖ ≤ ε for all i. Then for the matrices X1

i the following
hold.

C1: We have
K−1X1

i − I = Tn +O(ε3), (9.27)

where

Tn =
1

n

n∑
j=1

Ej +
2b2
n2

n∑
i,j=1

(Ei − Ej)2. (9.28)

C2: There are positive constants θ, σ and ε̄ < 1 (all of which may depend on
n) such that for all ε ≤ ε̄, ∥∥K−1

1 X1
i − I

∥∥ ≤ θε3 (9.29)

for a suitable matrix K1 satisfying
∥∥K−1K1 − I

∥∥ ≤ σε.
C3: The BMP iteration in Definition 9.8 converges at least cubically.

C4: We have
K−1

1 MBMP (X0
1 , . . . , X

0
n)− I = O(ε3), (9.30)

where MBMP (X0
1 , . . . , X

0
n) denotes the limit point of the BMP-process in

Definition 9.8.

The last section ensures that the properties mentioned in Definition 9.4 are
fulfilled.

9.7 Properties of the ALM and BMP mean

We will show that the limit point of the ALM and BMP processes, denoted
by MALM (X1, . . . , Xn) and MBMP (X1, . . . , Xn) respectively, as extensions of
symmetric matrix means, fulfill the following required properties.

Theorem 9.24 (M. Pálfia [64]). If M(A,B) is a symmetric matrix mean, then
the M := MALM (X1, . . . , Xn) and M := MBMP (X1, . . . , Xn) extensions fulfill
the following properties

(I) M(X, . . . ,X) = X for every X ∈ P(r,C),

(II) M(X1, . . . , Xn) is invariant under the permutation of its variables,

(III) min(X1, . . . , Xn) ≤ M(X1, . . . , Xn) ≤ max(X1, . . . , Xn) if min and max
exist with respect to the positive definite order,

(IV) If Xi ≤ X ′i, then M(X1, . . . , Xn) ≤M(X ′1, . . . , X
′
n),

(V) M(X1, . . . , Xn) is continuous,
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(VI) M(CX1C
∗, . . . , CXnC

∗) = CM(X1, . . . , Xn)C∗ for all invertible C.

Proposition 9.25 (M. Pálfia [64]). If M(A,B) ≤ N(A,B) are functions satis-
fying the properties of F (A,B) in Theorem 9.21, then the same ordering is true
for the ALM limit points M(X1, . . . , Xn) and N(X1, . . . , Xn).

Proposition 9.26 (M. Pálfia [64]). If Mt(A,B) ≤ Nt(A,B) are functions sat-
isfying the properties of Ft(A,B) in Theorem 9.22, then the same ordering is
true for the BMP limit points M(X1, . . . , Xn) and N(X1, . . . , Xn).
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György Serény has made it possible for me to start any sort of research work in
mathematics. I am very grateful for that and the vise advices that he has given.
I am especially thankful to professor Dénes Petz for giving me this very nice
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